A mathematical finance approach to the stochastic and intermittent viscosity fluctuations in living cells

Here we report on the viscosity of eukaryotic living cells, as a function of time, and on the application of stochastic models to analyze its temporal fluctuations. The viscoelastic properties of NIH/3T3 fibroblast cells are investigated using an active microrheological technique, where the magnetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2020-07, Vol.16 (25), p.5959-5969
Hauptverfasser: Bostoen, Claude L, Berret, Jean-François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5969
container_issue 25
container_start_page 5959
container_title Soft matter
container_volume 16
creator Bostoen, Claude L
Berret, Jean-François
description Here we report on the viscosity of eukaryotic living cells, as a function of time, and on the application of stochastic models to analyze its temporal fluctuations. The viscoelastic properties of NIH/3T3 fibroblast cells are investigated using an active microrheological technique, where the magnetic wires, embedded into cells, are being actuated remotely. The data reveal anomalous transient responses characterized by intermittent phases of slow and fast rotation, revealing significant fluctuations. The time dependent viscosity is analyzed from a time series perspective by computing the autocorrelation functions and the variograms, two functions used to describe stochastic processes in mathematical finance. The resulting analysis gives evidence of a sub-diffusive mean-reverting process characterized by an autoregressive coefficient lower than 1. It also shows the existence of specific cellular times in the ranges 1-10 s and 100-200 s, not previously disclosed. The shorter time is found to be related to the internal relaxation time of the cytoplasm. To our knowledge, this is the first time that similarities are established between the properties of time series describing the intracellular metabolism and the statistical results from a mathematical finance approach. The current approach could be exploited to reveal hidden features from biological complex systems or to determine new biomarkers of cellular metabolism. Here we report on the viscosity of eukaryotic living cells, as a function of time, and on the application of stochastic models to analyze its temporal fluctuations.
doi_str_mv 10.1039/c9sm02534k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2413996500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418999056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b404cb373df147b6bb12ef0f0ea7452150b606542a017450a65affc399e214903</originalsourceid><addsrcrecordid>eNp9kc-LEzEcxYMo7rp68a5EvKhQ_ebHZCbHUtQVKx5U8BYyaWKzziTdSaaw_73f2rWCBy9JyPvweI9HyGMGrxkI_cbpMgJvhPx5h5yzVsqF6mR39_QW38_Ig1KuAEQnmbpPzgRvJOetPidxSUdbtx6P6OxAQ0w2OU_tbjdl67a0ZooyLTW7rS0IUZs2NKbqpzHW6lOl-1hcLrHe0DDMrs5olVNBhg5xH9MP6vwwlIfkXrBD8Y9u7wvy7d3br6vLxfrz-w-r5XrhZAt10UuQrhet2AQm2171PeM-QABvW9lw1kCvQGF8C1ivAasaG4ITWnvOpAZxQV4efbd2MLspjna6MdlGc7lcm8MfcAWd0mzPkH1xZLHs9exLNSN2wbQ2-TwXwyVDY9XAwfb5P-hVnqeETQ5Up7WGRiH16ki5KZcy-XBKwMAcxjIr_eXT77E-Ivz01nLuR785oX_WQeDJEZiKO6l_10b92f90s9sE8QuDxaQs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418999056</pqid></control><display><type>article</type><title>A mathematical finance approach to the stochastic and intermittent viscosity fluctuations in living cells</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Bostoen, Claude L ; Berret, Jean-François</creator><creatorcontrib>Bostoen, Claude L ; Berret, Jean-François</creatorcontrib><description>Here we report on the viscosity of eukaryotic living cells, as a function of time, and on the application of stochastic models to analyze its temporal fluctuations. The viscoelastic properties of NIH/3T3 fibroblast cells are investigated using an active microrheological technique, where the magnetic wires, embedded into cells, are being actuated remotely. The data reveal anomalous transient responses characterized by intermittent phases of slow and fast rotation, revealing significant fluctuations. The time dependent viscosity is analyzed from a time series perspective by computing the autocorrelation functions and the variograms, two functions used to describe stochastic processes in mathematical finance. The resulting analysis gives evidence of a sub-diffusive mean-reverting process characterized by an autoregressive coefficient lower than 1. It also shows the existence of specific cellular times in the ranges 1-10 s and 100-200 s, not previously disclosed. The shorter time is found to be related to the internal relaxation time of the cytoplasm. To our knowledge, this is the first time that similarities are established between the properties of time series describing the intracellular metabolism and the statistical results from a mathematical finance approach. The current approach could be exploited to reveal hidden features from biological complex systems or to determine new biomarkers of cellular metabolism. Here we report on the viscosity of eukaryotic living cells, as a function of time, and on the application of stochastic models to analyze its temporal fluctuations.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c9sm02534k</identifier><identifier>PMID: 32542279</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Autocorrelation functions ; Autoregressive processes ; Biomarkers ; Cells (biology) ; Complex systems ; Condensed Matter ; Cytoplasm ; Finance ; Fluctuations ; Magnetics ; Mathematical analysis ; Mathematical models ; Metabolism ; Mice ; Microscopy, Phase-Contrast ; Models, Biological ; NIH 3T3 Cells ; Physics ; Relaxation time ; Rheology ; Soft Condensed Matter ; Stochastic models ; Stochastic Processes ; Time dependence ; Time series ; Transient response ; Viscoelasticity ; Viscosity</subject><ispartof>Soft matter, 2020-07, Vol.16 (25), p.5959-5969</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b404cb373df147b6bb12ef0f0ea7452150b606542a017450a65affc399e214903</citedby><cites>FETCH-LOGICAL-c470t-b404cb373df147b6bb12ef0f0ea7452150b606542a017450a65affc399e214903</cites><orcidid>0000-0001-5458-8653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32542279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02608691$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bostoen, Claude L</creatorcontrib><creatorcontrib>Berret, Jean-François</creatorcontrib><title>A mathematical finance approach to the stochastic and intermittent viscosity fluctuations in living cells</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Here we report on the viscosity of eukaryotic living cells, as a function of time, and on the application of stochastic models to analyze its temporal fluctuations. The viscoelastic properties of NIH/3T3 fibroblast cells are investigated using an active microrheological technique, where the magnetic wires, embedded into cells, are being actuated remotely. The data reveal anomalous transient responses characterized by intermittent phases of slow and fast rotation, revealing significant fluctuations. The time dependent viscosity is analyzed from a time series perspective by computing the autocorrelation functions and the variograms, two functions used to describe stochastic processes in mathematical finance. The resulting analysis gives evidence of a sub-diffusive mean-reverting process characterized by an autoregressive coefficient lower than 1. It also shows the existence of specific cellular times in the ranges 1-10 s and 100-200 s, not previously disclosed. The shorter time is found to be related to the internal relaxation time of the cytoplasm. To our knowledge, this is the first time that similarities are established between the properties of time series describing the intracellular metabolism and the statistical results from a mathematical finance approach. The current approach could be exploited to reveal hidden features from biological complex systems or to determine new biomarkers of cellular metabolism. Here we report on the viscosity of eukaryotic living cells, as a function of time, and on the application of stochastic models to analyze its temporal fluctuations.</description><subject>Animals</subject><subject>Autocorrelation functions</subject><subject>Autoregressive processes</subject><subject>Biomarkers</subject><subject>Cells (biology)</subject><subject>Complex systems</subject><subject>Condensed Matter</subject><subject>Cytoplasm</subject><subject>Finance</subject><subject>Fluctuations</subject><subject>Magnetics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Microscopy, Phase-Contrast</subject><subject>Models, Biological</subject><subject>NIH 3T3 Cells</subject><subject>Physics</subject><subject>Relaxation time</subject><subject>Rheology</subject><subject>Soft Condensed Matter</subject><subject>Stochastic models</subject><subject>Stochastic Processes</subject><subject>Time dependence</subject><subject>Time series</subject><subject>Transient response</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc-LEzEcxYMo7rp68a5EvKhQ_ebHZCbHUtQVKx5U8BYyaWKzziTdSaaw_73f2rWCBy9JyPvweI9HyGMGrxkI_cbpMgJvhPx5h5yzVsqF6mR39_QW38_Ig1KuAEQnmbpPzgRvJOetPidxSUdbtx6P6OxAQ0w2OU_tbjdl67a0ZooyLTW7rS0IUZs2NKbqpzHW6lOl-1hcLrHe0DDMrs5olVNBhg5xH9MP6vwwlIfkXrBD8Y9u7wvy7d3br6vLxfrz-w-r5XrhZAt10UuQrhet2AQm2171PeM-QABvW9lw1kCvQGF8C1ivAasaG4ITWnvOpAZxQV4efbd2MLspjna6MdlGc7lcm8MfcAWd0mzPkH1xZLHs9exLNSN2wbQ2-TwXwyVDY9XAwfb5P-hVnqeETQ5Up7WGRiH16ki5KZcy-XBKwMAcxjIr_eXT77E-Ivz01nLuR785oX_WQeDJEZiKO6l_10b92f90s9sE8QuDxaQs</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Bostoen, Claude L</creator><creator>Berret, Jean-François</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5458-8653</orcidid></search><sort><creationdate>20200707</creationdate><title>A mathematical finance approach to the stochastic and intermittent viscosity fluctuations in living cells</title><author>Bostoen, Claude L ; Berret, Jean-François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b404cb373df147b6bb12ef0f0ea7452150b606542a017450a65affc399e214903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Autocorrelation functions</topic><topic>Autoregressive processes</topic><topic>Biomarkers</topic><topic>Cells (biology)</topic><topic>Complex systems</topic><topic>Condensed Matter</topic><topic>Cytoplasm</topic><topic>Finance</topic><topic>Fluctuations</topic><topic>Magnetics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Microscopy, Phase-Contrast</topic><topic>Models, Biological</topic><topic>NIH 3T3 Cells</topic><topic>Physics</topic><topic>Relaxation time</topic><topic>Rheology</topic><topic>Soft Condensed Matter</topic><topic>Stochastic models</topic><topic>Stochastic Processes</topic><topic>Time dependence</topic><topic>Time series</topic><topic>Transient response</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bostoen, Claude L</creatorcontrib><creatorcontrib>Berret, Jean-François</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bostoen, Claude L</au><au>Berret, Jean-François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical finance approach to the stochastic and intermittent viscosity fluctuations in living cells</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2020-07-07</date><risdate>2020</risdate><volume>16</volume><issue>25</issue><spage>5959</spage><epage>5969</epage><pages>5959-5969</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Here we report on the viscosity of eukaryotic living cells, as a function of time, and on the application of stochastic models to analyze its temporal fluctuations. The viscoelastic properties of NIH/3T3 fibroblast cells are investigated using an active microrheological technique, where the magnetic wires, embedded into cells, are being actuated remotely. The data reveal anomalous transient responses characterized by intermittent phases of slow and fast rotation, revealing significant fluctuations. The time dependent viscosity is analyzed from a time series perspective by computing the autocorrelation functions and the variograms, two functions used to describe stochastic processes in mathematical finance. The resulting analysis gives evidence of a sub-diffusive mean-reverting process characterized by an autoregressive coefficient lower than 1. It also shows the existence of specific cellular times in the ranges 1-10 s and 100-200 s, not previously disclosed. The shorter time is found to be related to the internal relaxation time of the cytoplasm. To our knowledge, this is the first time that similarities are established between the properties of time series describing the intracellular metabolism and the statistical results from a mathematical finance approach. The current approach could be exploited to reveal hidden features from biological complex systems or to determine new biomarkers of cellular metabolism. Here we report on the viscosity of eukaryotic living cells, as a function of time, and on the application of stochastic models to analyze its temporal fluctuations.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32542279</pmid><doi>10.1039/c9sm02534k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5458-8653</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2020-07, Vol.16 (25), p.5959-5969
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_2413996500
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Animals
Autocorrelation functions
Autoregressive processes
Biomarkers
Cells (biology)
Complex systems
Condensed Matter
Cytoplasm
Finance
Fluctuations
Magnetics
Mathematical analysis
Mathematical models
Metabolism
Mice
Microscopy, Phase-Contrast
Models, Biological
NIH 3T3 Cells
Physics
Relaxation time
Rheology
Soft Condensed Matter
Stochastic models
Stochastic Processes
Time dependence
Time series
Transient response
Viscoelasticity
Viscosity
title A mathematical finance approach to the stochastic and intermittent viscosity fluctuations in living cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20finance%20approach%20to%20the%20stochastic%20and%20intermittent%20viscosity%20fluctuations%20in%20living%20cells&rft.jtitle=Soft%20matter&rft.au=Bostoen,%20Claude%20L&rft.date=2020-07-07&rft.volume=16&rft.issue=25&rft.spage=5959&rft.epage=5969&rft.pages=5959-5969&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c9sm02534k&rft_dat=%3Cproquest_cross%3E2418999056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418999056&rft_id=info:pmid/32542279&rfr_iscdi=true