A mathematical finance approach to the stochastic and intermittent viscosity fluctuations in living cells

Here we report on the viscosity of eukaryotic living cells, as a function of time, and on the application of stochastic models to analyze its temporal fluctuations. The viscoelastic properties of NIH/3T3 fibroblast cells are investigated using an active microrheological technique, where the magnetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2020-07, Vol.16 (25), p.5959-5969
Hauptverfasser: Bostoen, Claude L, Berret, Jean-François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here we report on the viscosity of eukaryotic living cells, as a function of time, and on the application of stochastic models to analyze its temporal fluctuations. The viscoelastic properties of NIH/3T3 fibroblast cells are investigated using an active microrheological technique, where the magnetic wires, embedded into cells, are being actuated remotely. The data reveal anomalous transient responses characterized by intermittent phases of slow and fast rotation, revealing significant fluctuations. The time dependent viscosity is analyzed from a time series perspective by computing the autocorrelation functions and the variograms, two functions used to describe stochastic processes in mathematical finance. The resulting analysis gives evidence of a sub-diffusive mean-reverting process characterized by an autoregressive coefficient lower than 1. It also shows the existence of specific cellular times in the ranges 1-10 s and 100-200 s, not previously disclosed. The shorter time is found to be related to the internal relaxation time of the cytoplasm. To our knowledge, this is the first time that similarities are established between the properties of time series describing the intracellular metabolism and the statistical results from a mathematical finance approach. The current approach could be exploited to reveal hidden features from biological complex systems or to determine new biomarkers of cellular metabolism. Here we report on the viscosity of eukaryotic living cells, as a function of time, and on the application of stochastic models to analyze its temporal fluctuations.
ISSN:1744-683X
1744-6848
DOI:10.1039/c9sm02534k