Influence of Production Process and Scale on Quality of Polypeptide Drugs: a Case Study on GLP-1 Analogs

Purpose Manufacturing processes for polypeptide/protein drugs are designed to ensure robust quality, efficacy and safety. Process differences introduced by follow-on manufacturers may result in changes in quality and clinical outcomes. This study investigated the impact of production methods on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical research 2020-07, Vol.37 (7), p.120-120, Article 120
Hauptverfasser: Staby, Arne, Steensgaard, Dorte Bjerre, Haselmann, Kim F., Marino, Jesper Søndergaard, Bartholdy, Christina, Videbæk, Nicoline, Schelde, Ole, Bosch-Traberg, Heidrun, Spang, Lotte Touborg, Asgreen, Désirée J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Manufacturing processes for polypeptide/protein drugs are designed to ensure robust quality, efficacy and safety. Process differences introduced by follow-on manufacturers may result in changes in quality and clinical outcomes. This study investigated the impact of production methods on the stability and impurities of liraglutide and semaglutide drug substances/products, and the potential impact on drug quality, efficacy and safety. Methods State-of-the-art analytical methods were used to compare physical and chemical stability, and impurity profiles of drug substances/products from different suppliers. Identified polypeptide-related impurities were evaluated for immunogenicity potential by in silico T cell epitope prediction. Semaglutide immunogenicity in clinical trials (SUSTAIN) was evaluated using a tiered antibody analysis. Results Manufacturing scale and process strongly impacted the physical stability of the products. Trace metals increased high-molecular-weight protein formation for liraglutide and semaglutide. Synthetic and recombinant liraglutide produced by five suppliers had distinct impurity profiles compared with the originator. In silico evaluation suggested that new impurities could be immunogenic. Immunogenicity of semaglutide in clinical trials was lower than for liraglutide. Conclusions Differences in manufacturing processes affect chemical/physical stability and impurity profile, and may impact immunogenicity. Follow-on versions of liraglutide and semaglutide, and possibly other polypeptides, should be clinically evaluated for efficacy and safety.
ISSN:0724-8741
1573-904X
DOI:10.1007/s11095-020-02817-9