ROY Reclaims Its Crown: New Ways To Increase Polymorphic Diversity
Chemical compounds that exist in multiple crystalline forms are said to exhibit polymorphism. Polymorphs have the same composition, but their structures and properties can vary markedly. In many fields, conditions for crystallizing compounds of interest are screened exhaustively to generate as many...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2020-07, Vol.142 (27), p.11873-11883 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemical compounds that exist in multiple crystalline forms are said to exhibit polymorphism. Polymorphs have the same composition, but their structures and properties can vary markedly. In many fields, conditions for crystallizing compounds of interest are screened exhaustively to generate as many polymorphs as possible, from which the most advantageous form can be selected. We report new ways to search for polymorphs and increase polymorphic diversity, based on crystallization induced by suitably designed mixed-crystal seeds. The potential of the strategy has been demonstrated by using it to produce new polymorphs of the benchmark compound ROY as single crystals structurally characterized by X-ray diffraction. This allows ROY to reclaim its crown as the most polymorphic compound in the Cambridge Structural Database. More generally, the methods promise to become valuable tools for polymorphic screening in all fields where crystalline solids are used. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.0c04434 |