Dimensional Mixing Increases the Efficiency of 2D/3D Perovskite Solar Cells
2D/3D heterojunction perovskite solar cells have demonstrated superior efficiency and stability compared to their fully 3D counterparts. Previous studies have focused on producing 2D layers containing predominantly n = 1 perovskite quantum wells. In this report we demonstrate a technique to introduc...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2020-07, Vol.11 (13), p.5115-5119 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 2D/3D heterojunction perovskite solar cells have demonstrated superior efficiency and stability compared to their fully 3D counterparts. Previous studies have focused on producing 2D layers containing predominantly n = 1 perovskite quantum wells. In this report we demonstrate a technique to introduce dimensional mixing into the 2D layer, and we show that this leads to more efficient devices relative to controls. Simulations suggest that the improvements are due to a reduction in trap state density and superior band alignment between the 3D/2D perovskite and the hole-transporting layer. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.0c01444 |