Local Molecular Field Theory for Nonequilibrium Systems

We provide a framework for extending equilibrium local molecular field (LMF) theory to a statistical ensemble evolving under a time-dependent applied field. In this context, the self-consistency of the original LMF equation is achieved dynamically, which provides an efficient method for computing th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2020-07, Vol.124 (27), p.5676-5684
Hauptverfasser: Baker, Edward B, Rodgers, Jocelyn M, Weeks, John D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a framework for extending equilibrium local molecular field (LMF) theory to a statistical ensemble evolving under a time-dependent applied field. In this context, the self-consistency of the original LMF equation is achieved dynamically, which provides an efficient method for computing the equilibrium LMF potential, in addition to providing the nonequilibrium generalization. As a concrete example, we investigate water confined between hydrophobic or charged walls, systems that are very sensitive to the treatment of long-ranged electrostatics. We then analyze confined water in the presence of a time-dependent applied electric field, generated by a sinusoidal or abrupt variation of the magnitudes of uniform charge densities on each wall. Very accurate results are found from the time-dependent LMF formalism even for strong static fields and for time-dependent systems that are driven far from equilibrium where linear response methods fail.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.0c03295