An evolutionarily conserved motif is required for Plasmodesmata-located protein 5 to regulate cell-to-cell movement

Numerous cell surface receptors and receptor-like proteins (RLPs) undergo activation or deactivation via a transmembrane domain (TMD). A subset of plant RLPs distinctively localizes to the plasma membrane-lined pores called plasmodesmata. Those RLPs include the Arabidopsis thaliana Plasmodesmata-loc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2020-06, Vol.3 (1), p.291-291, Article 291
Hauptverfasser: Wang, Xu, Robles Luna, Gabriel, Arighi, Cecilia Noemi, Lee, Jung-Youn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerous cell surface receptors and receptor-like proteins (RLPs) undergo activation or deactivation via a transmembrane domain (TMD). A subset of plant RLPs distinctively localizes to the plasma membrane-lined pores called plasmodesmata. Those RLPs include the Arabidopsis thaliana Plasmodesmata-located protein (PDLP) 5, which is well known for its vital function regulating plasmodesmal gating and molecular movement between cells. In this study, we report that the TMD, although not a determining factor for the plasmodesmal targeting, serves essential roles for the PDLP5 function. In addition to its role for membrane anchoring, the TMD mediates PDLP5 self-interaction and carries an evolutionarily conserved motif that is essential for PDLP5 to regulate cell-to-cell movement. Computational modeling-based analyses suggest that PDLP TMDs have high propensities to dimerize. We discuss how a specific mode(s) of TMD dimerization might serve as a common mechanism for PDLP5 and other PDLP members to regulate cell-to-cell movement. Wang, Robles-Luna et al demonstrate that in Arabidopsis, the transmembrane domain (TMD) of plasmodesmata-located protein 5 (PDLP5) is required for PDPL5 dimerisation and membrane anchoring. This study suggests the importance of the TMD in the role for PDPL5 in regulating pasmodesmal opening.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-020-1007-0