Probing Nonequilibrium Dynamics of Photoexcited Polarons on a Metal-Oxide Surface with Atomic Precision

Understanding the nonequilibrium dynamics of photoexcited polarons at the atomic scale is of great importance for improving the performance of photocatalytic and solar-energy materials. Using a pulsed-laser-combined scanning tunneling microscopy and spectroscopy, here we succeeded in resolving the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-05, Vol.124 (20), p.1-206801, Article 206801
Hauptverfasser: Guo, Chaoyu, Meng, Xiangzhi, Fu, Huixia, Wang, Qin, Wang, Huimin, Tian, Ye, Peng, Jinbo, Ma, Runze, Weng, Yuxiang, Meng, Sheng, Wang, Enge, Jiang, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the nonequilibrium dynamics of photoexcited polarons at the atomic scale is of great importance for improving the performance of photocatalytic and solar-energy materials. Using a pulsed-laser-combined scanning tunneling microscopy and spectroscopy, here we succeeded in resolving the relaxation dynamics of single polarons bound to oxygen vacancies on the surface of a prototypical photocatalyst, rutile TiO2(110). The visible-light excitation of the defect-derived polarons depletes the polaron states and leads to delocalized free electrons in the conduction band, which is further corroborated by ab initio calculations. We found that the trapping time of polarons becomes considerably shorter when the polaron is bound to two surface oxygen vacancies than that to one. In contrast, the lifetime of photogenerated free electrons is insensitive to the atomic-scale distribution of the defects but correlated with the averaged defect density within a nanometer-sized area. Those results shed new light on the photocatalytically active sites at the metal-oxide surface.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.124.206801