Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians
Quantum-mechanical simulations of charge and exciton transfer in molecular organic materials are a key method to increase our understanding of organic semiconductors. Our goal is to build an efficient multiscale model to predict charge-transfer mobilities and exciton diffusion constants from nonadia...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2020-07, Vol.16 (7), p.4061-4070 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4070 |
---|---|
container_issue | 7 |
container_start_page | 4061 |
container_title | Journal of chemical theory and computation |
container_volume | 16 |
creator | Krämer, Mila Dohmen, Philipp M Xie, Weiwei Holub, Daniel Christensen, Anders S Elstner, Marcus |
description | Quantum-mechanical simulations of charge and exciton transfer in molecular organic materials are a key method to increase our understanding of organic semiconductors. Our goal is to build an efficient multiscale model to predict charge-transfer mobilities and exciton diffusion constants from nonadiabatic molecular dynamics simulations and Marcus-based Monte Carlo approaches. In this work, we apply machine learning models to simulate charge and exciton propagation in organic semiconductors. We show that kernel ridge regression models can be trained to predict electronic and excitonic couplings from semiempirical density functional tight binding (DFTB) reference data with very good accuracy. In simulations, the models could reproduce hole mobilities along the anthracene crystal axes to within 8.5% of the DFTB reference and 34% of the experimental results with only 1000 training data points. Using these models decreased the cost of exciton transfer simulations by one order of magnitude. |
doi_str_mv | 10.1021/acs.jctc.0c00246 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2409646653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427317573</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-b712e34491d55cb9a2f829619d2030fa277c5b9367ab12bb1a4925648345bb443</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKt3jwtePLg1X5ttjlLUKhUPtucwyWbblN1sTbag_97UVg-CpxmY530ZHoQuCR4RTMktmDham96MsMGYcnGEBqTgMpeCiuPfnYxP0VmMa4wZ45QN0PNkBWFpM_BVdv9hXN_5bB7Ax9qG7M212wZ61_mYLaLzy-wFzMp5m88sBG-rbAqta1LGpcQ5OqmhifbiMIdo8XA_n0zz2evj0-RulgPjpM91SahlnEtSFYXREmg9pukzWVHMcA20LE2hJRMlaEK1JsAlLQQfM15ozTkbout97yZ071sbe9W6aGzTgLfdNirKsRRciIIl9OoPuu62wafvEkVLRsqi3FF4T5nQxRhsrTbBtRA-FcFqJ1cluWonVx3kpsjNPvJ9-en8F_8Cw1h7oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427317573</pqid></control><display><type>article</type><title>Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians</title><source>ACS Publications</source><creator>Krämer, Mila ; Dohmen, Philipp M ; Xie, Weiwei ; Holub, Daniel ; Christensen, Anders S ; Elstner, Marcus</creator><creatorcontrib>Krämer, Mila ; Dohmen, Philipp M ; Xie, Weiwei ; Holub, Daniel ; Christensen, Anders S ; Elstner, Marcus</creatorcontrib><description>Quantum-mechanical simulations of charge and exciton transfer in molecular organic materials are a key method to increase our understanding of organic semiconductors. Our goal is to build an efficient multiscale model to predict charge-transfer mobilities and exciton diffusion constants from nonadiabatic molecular dynamics simulations and Marcus-based Monte Carlo approaches. In this work, we apply machine learning models to simulate charge and exciton propagation in organic semiconductors. We show that kernel ridge regression models can be trained to predict electronic and excitonic couplings from semiempirical density functional tight binding (DFTB) reference data with very good accuracy. In simulations, the models could reproduce hole mobilities along the anthracene crystal axes to within 8.5% of the DFTB reference and 34% of the experimental results with only 1000 training data points. Using these models decreased the cost of exciton transfer simulations by one order of magnitude.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.0c00246</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Anthracene ; Charge simulation ; Charge transfer ; Computer simulation ; Couplings ; Data points ; Dynamics ; Excitons ; Machine learning ; Model accuracy ; Molecular dynamics ; Organic materials ; Organic semiconductors ; Regression models ; Semiconductors ; Simulation</subject><ispartof>Journal of chemical theory and computation, 2020-07, Vol.16 (7), p.4061-4070</ispartof><rights>Copyright American Chemical Society Jul 14, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a341t-b712e34491d55cb9a2f829619d2030fa277c5b9367ab12bb1a4925648345bb443</citedby><cites>FETCH-LOGICAL-a341t-b712e34491d55cb9a2f829619d2030fa277c5b9367ab12bb1a4925648345bb443</cites><orcidid>0000-0002-5460-0218 ; 0000-0001-8224-5340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.0c00246$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.0c00246$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Krämer, Mila</creatorcontrib><creatorcontrib>Dohmen, Philipp M</creatorcontrib><creatorcontrib>Xie, Weiwei</creatorcontrib><creatorcontrib>Holub, Daniel</creatorcontrib><creatorcontrib>Christensen, Anders S</creatorcontrib><creatorcontrib>Elstner, Marcus</creatorcontrib><title>Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Quantum-mechanical simulations of charge and exciton transfer in molecular organic materials are a key method to increase our understanding of organic semiconductors. Our goal is to build an efficient multiscale model to predict charge-transfer mobilities and exciton diffusion constants from nonadiabatic molecular dynamics simulations and Marcus-based Monte Carlo approaches. In this work, we apply machine learning models to simulate charge and exciton propagation in organic semiconductors. We show that kernel ridge regression models can be trained to predict electronic and excitonic couplings from semiempirical density functional tight binding (DFTB) reference data with very good accuracy. In simulations, the models could reproduce hole mobilities along the anthracene crystal axes to within 8.5% of the DFTB reference and 34% of the experimental results with only 1000 training data points. Using these models decreased the cost of exciton transfer simulations by one order of magnitude.</description><subject>Anthracene</subject><subject>Charge simulation</subject><subject>Charge transfer</subject><subject>Computer simulation</subject><subject>Couplings</subject><subject>Data points</subject><subject>Dynamics</subject><subject>Excitons</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Molecular dynamics</subject><subject>Organic materials</subject><subject>Organic semiconductors</subject><subject>Regression models</subject><subject>Semiconductors</subject><subject>Simulation</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKt3jwtePLg1X5ttjlLUKhUPtucwyWbblN1sTbag_97UVg-CpxmY530ZHoQuCR4RTMktmDham96MsMGYcnGEBqTgMpeCiuPfnYxP0VmMa4wZ45QN0PNkBWFpM_BVdv9hXN_5bB7Ax9qG7M212wZ61_mYLaLzy-wFzMp5m88sBG-rbAqta1LGpcQ5OqmhifbiMIdo8XA_n0zz2evj0-RulgPjpM91SahlnEtSFYXREmg9pukzWVHMcA20LE2hJRMlaEK1JsAlLQQfM15ozTkbout97yZ071sbe9W6aGzTgLfdNirKsRRciIIl9OoPuu62wafvEkVLRsqi3FF4T5nQxRhsrTbBtRA-FcFqJ1cluWonVx3kpsjNPvJ9-en8F_8Cw1h7oQ</recordid><startdate>20200714</startdate><enddate>20200714</enddate><creator>Krämer, Mila</creator><creator>Dohmen, Philipp M</creator><creator>Xie, Weiwei</creator><creator>Holub, Daniel</creator><creator>Christensen, Anders S</creator><creator>Elstner, Marcus</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5460-0218</orcidid><orcidid>https://orcid.org/0000-0001-8224-5340</orcidid></search><sort><creationdate>20200714</creationdate><title>Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians</title><author>Krämer, Mila ; Dohmen, Philipp M ; Xie, Weiwei ; Holub, Daniel ; Christensen, Anders S ; Elstner, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-b712e34491d55cb9a2f829619d2030fa277c5b9367ab12bb1a4925648345bb443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anthracene</topic><topic>Charge simulation</topic><topic>Charge transfer</topic><topic>Computer simulation</topic><topic>Couplings</topic><topic>Data points</topic><topic>Dynamics</topic><topic>Excitons</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Molecular dynamics</topic><topic>Organic materials</topic><topic>Organic semiconductors</topic><topic>Regression models</topic><topic>Semiconductors</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krämer, Mila</creatorcontrib><creatorcontrib>Dohmen, Philipp M</creatorcontrib><creatorcontrib>Xie, Weiwei</creatorcontrib><creatorcontrib>Holub, Daniel</creatorcontrib><creatorcontrib>Christensen, Anders S</creatorcontrib><creatorcontrib>Elstner, Marcus</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krämer, Mila</au><au>Dohmen, Philipp M</au><au>Xie, Weiwei</au><au>Holub, Daniel</au><au>Christensen, Anders S</au><au>Elstner, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2020-07-14</date><risdate>2020</risdate><volume>16</volume><issue>7</issue><spage>4061</spage><epage>4070</epage><pages>4061-4070</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Quantum-mechanical simulations of charge and exciton transfer in molecular organic materials are a key method to increase our understanding of organic semiconductors. Our goal is to build an efficient multiscale model to predict charge-transfer mobilities and exciton diffusion constants from nonadiabatic molecular dynamics simulations and Marcus-based Monte Carlo approaches. In this work, we apply machine learning models to simulate charge and exciton propagation in organic semiconductors. We show that kernel ridge regression models can be trained to predict electronic and excitonic couplings from semiempirical density functional tight binding (DFTB) reference data with very good accuracy. In simulations, the models could reproduce hole mobilities along the anthracene crystal axes to within 8.5% of the DFTB reference and 34% of the experimental results with only 1000 training data points. Using these models decreased the cost of exciton transfer simulations by one order of magnitude.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jctc.0c00246</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5460-0218</orcidid><orcidid>https://orcid.org/0000-0001-8224-5340</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2020-07, Vol.16 (7), p.4061-4070 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_2409646653 |
source | ACS Publications |
subjects | Anthracene Charge simulation Charge transfer Computer simulation Couplings Data points Dynamics Excitons Machine learning Model accuracy Molecular dynamics Organic materials Organic semiconductors Regression models Semiconductors Simulation |
title | Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20and%20Exciton%20Transfer%20Simulations%20Using%20Machine-Learned%20Hamiltonians&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Kra%CC%88mer,%20Mila&rft.date=2020-07-14&rft.volume=16&rft.issue=7&rft.spage=4061&rft.epage=4070&rft.pages=4061-4070&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.0c00246&rft_dat=%3Cproquest_cross%3E2427317573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427317573&rft_id=info:pmid/&rfr_iscdi=true |