Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians

Quantum-mechanical simulations of charge and exciton transfer in molecular organic materials are a key method to increase our understanding of organic semiconductors. Our goal is to build an efficient multiscale model to predict charge-transfer mobilities and exciton diffusion constants from nonadia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2020-07, Vol.16 (7), p.4061-4070
Hauptverfasser: Krämer, Mila, Dohmen, Philipp M, Xie, Weiwei, Holub, Daniel, Christensen, Anders S, Elstner, Marcus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4070
container_issue 7
container_start_page 4061
container_title Journal of chemical theory and computation
container_volume 16
creator Krämer, Mila
Dohmen, Philipp M
Xie, Weiwei
Holub, Daniel
Christensen, Anders S
Elstner, Marcus
description Quantum-mechanical simulations of charge and exciton transfer in molecular organic materials are a key method to increase our understanding of organic semiconductors. Our goal is to build an efficient multiscale model to predict charge-transfer mobilities and exciton diffusion constants from nonadiabatic molecular dynamics simulations and Marcus-based Monte Carlo approaches. In this work, we apply machine learning models to simulate charge and exciton propagation in organic semiconductors. We show that kernel ridge regression models can be trained to predict electronic and excitonic couplings from semiempirical density functional tight binding (DFTB) reference data with very good accuracy. In simulations, the models could reproduce hole mobilities along the anthracene crystal axes to within 8.5% of the DFTB reference and 34% of the experimental results with only 1000 training data points. Using these models decreased the cost of exciton transfer simulations by one order of magnitude.
doi_str_mv 10.1021/acs.jctc.0c00246
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2409646653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427317573</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-b712e34491d55cb9a2f829619d2030fa277c5b9367ab12bb1a4925648345bb443</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKt3jwtePLg1X5ttjlLUKhUPtucwyWbblN1sTbag_97UVg-CpxmY530ZHoQuCR4RTMktmDham96MsMGYcnGEBqTgMpeCiuPfnYxP0VmMa4wZ45QN0PNkBWFpM_BVdv9hXN_5bB7Ax9qG7M212wZ61_mYLaLzy-wFzMp5m88sBG-rbAqta1LGpcQ5OqmhifbiMIdo8XA_n0zz2evj0-RulgPjpM91SahlnEtSFYXREmg9pukzWVHMcA20LE2hJRMlaEK1JsAlLQQfM15ozTkbout97yZ071sbe9W6aGzTgLfdNirKsRRciIIl9OoPuu62wafvEkVLRsqi3FF4T5nQxRhsrTbBtRA-FcFqJ1cluWonVx3kpsjNPvJ9-en8F_8Cw1h7oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427317573</pqid></control><display><type>article</type><title>Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians</title><source>ACS Publications</source><creator>Krämer, Mila ; Dohmen, Philipp M ; Xie, Weiwei ; Holub, Daniel ; Christensen, Anders S ; Elstner, Marcus</creator><creatorcontrib>Krämer, Mila ; Dohmen, Philipp M ; Xie, Weiwei ; Holub, Daniel ; Christensen, Anders S ; Elstner, Marcus</creatorcontrib><description>Quantum-mechanical simulations of charge and exciton transfer in molecular organic materials are a key method to increase our understanding of organic semiconductors. Our goal is to build an efficient multiscale model to predict charge-transfer mobilities and exciton diffusion constants from nonadiabatic molecular dynamics simulations and Marcus-based Monte Carlo approaches. In this work, we apply machine learning models to simulate charge and exciton propagation in organic semiconductors. We show that kernel ridge regression models can be trained to predict electronic and excitonic couplings from semiempirical density functional tight binding (DFTB) reference data with very good accuracy. In simulations, the models could reproduce hole mobilities along the anthracene crystal axes to within 8.5% of the DFTB reference and 34% of the experimental results with only 1000 training data points. Using these models decreased the cost of exciton transfer simulations by one order of magnitude.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.0c00246</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Anthracene ; Charge simulation ; Charge transfer ; Computer simulation ; Couplings ; Data points ; Dynamics ; Excitons ; Machine learning ; Model accuracy ; Molecular dynamics ; Organic materials ; Organic semiconductors ; Regression models ; Semiconductors ; Simulation</subject><ispartof>Journal of chemical theory and computation, 2020-07, Vol.16 (7), p.4061-4070</ispartof><rights>Copyright American Chemical Society Jul 14, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a341t-b712e34491d55cb9a2f829619d2030fa277c5b9367ab12bb1a4925648345bb443</citedby><cites>FETCH-LOGICAL-a341t-b712e34491d55cb9a2f829619d2030fa277c5b9367ab12bb1a4925648345bb443</cites><orcidid>0000-0002-5460-0218 ; 0000-0001-8224-5340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.0c00246$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.0c00246$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Krämer, Mila</creatorcontrib><creatorcontrib>Dohmen, Philipp M</creatorcontrib><creatorcontrib>Xie, Weiwei</creatorcontrib><creatorcontrib>Holub, Daniel</creatorcontrib><creatorcontrib>Christensen, Anders S</creatorcontrib><creatorcontrib>Elstner, Marcus</creatorcontrib><title>Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Quantum-mechanical simulations of charge and exciton transfer in molecular organic materials are a key method to increase our understanding of organic semiconductors. Our goal is to build an efficient multiscale model to predict charge-transfer mobilities and exciton diffusion constants from nonadiabatic molecular dynamics simulations and Marcus-based Monte Carlo approaches. In this work, we apply machine learning models to simulate charge and exciton propagation in organic semiconductors. We show that kernel ridge regression models can be trained to predict electronic and excitonic couplings from semiempirical density functional tight binding (DFTB) reference data with very good accuracy. In simulations, the models could reproduce hole mobilities along the anthracene crystal axes to within 8.5% of the DFTB reference and 34% of the experimental results with only 1000 training data points. Using these models decreased the cost of exciton transfer simulations by one order of magnitude.</description><subject>Anthracene</subject><subject>Charge simulation</subject><subject>Charge transfer</subject><subject>Computer simulation</subject><subject>Couplings</subject><subject>Data points</subject><subject>Dynamics</subject><subject>Excitons</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Molecular dynamics</subject><subject>Organic materials</subject><subject>Organic semiconductors</subject><subject>Regression models</subject><subject>Semiconductors</subject><subject>Simulation</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKt3jwtePLg1X5ttjlLUKhUPtucwyWbblN1sTbag_97UVg-CpxmY530ZHoQuCR4RTMktmDham96MsMGYcnGEBqTgMpeCiuPfnYxP0VmMa4wZ45QN0PNkBWFpM_BVdv9hXN_5bB7Ax9qG7M212wZ61_mYLaLzy-wFzMp5m88sBG-rbAqta1LGpcQ5OqmhifbiMIdo8XA_n0zz2evj0-RulgPjpM91SahlnEtSFYXREmg9pukzWVHMcA20LE2hJRMlaEK1JsAlLQQfM15ozTkbout97yZ071sbe9W6aGzTgLfdNirKsRRciIIl9OoPuu62wafvEkVLRsqi3FF4T5nQxRhsrTbBtRA-FcFqJ1cluWonVx3kpsjNPvJ9-en8F_8Cw1h7oQ</recordid><startdate>20200714</startdate><enddate>20200714</enddate><creator>Krämer, Mila</creator><creator>Dohmen, Philipp M</creator><creator>Xie, Weiwei</creator><creator>Holub, Daniel</creator><creator>Christensen, Anders S</creator><creator>Elstner, Marcus</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5460-0218</orcidid><orcidid>https://orcid.org/0000-0001-8224-5340</orcidid></search><sort><creationdate>20200714</creationdate><title>Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians</title><author>Krämer, Mila ; Dohmen, Philipp M ; Xie, Weiwei ; Holub, Daniel ; Christensen, Anders S ; Elstner, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-b712e34491d55cb9a2f829619d2030fa277c5b9367ab12bb1a4925648345bb443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anthracene</topic><topic>Charge simulation</topic><topic>Charge transfer</topic><topic>Computer simulation</topic><topic>Couplings</topic><topic>Data points</topic><topic>Dynamics</topic><topic>Excitons</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Molecular dynamics</topic><topic>Organic materials</topic><topic>Organic semiconductors</topic><topic>Regression models</topic><topic>Semiconductors</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krämer, Mila</creatorcontrib><creatorcontrib>Dohmen, Philipp M</creatorcontrib><creatorcontrib>Xie, Weiwei</creatorcontrib><creatorcontrib>Holub, Daniel</creatorcontrib><creatorcontrib>Christensen, Anders S</creatorcontrib><creatorcontrib>Elstner, Marcus</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krämer, Mila</au><au>Dohmen, Philipp M</au><au>Xie, Weiwei</au><au>Holub, Daniel</au><au>Christensen, Anders S</au><au>Elstner, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2020-07-14</date><risdate>2020</risdate><volume>16</volume><issue>7</issue><spage>4061</spage><epage>4070</epage><pages>4061-4070</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Quantum-mechanical simulations of charge and exciton transfer in molecular organic materials are a key method to increase our understanding of organic semiconductors. Our goal is to build an efficient multiscale model to predict charge-transfer mobilities and exciton diffusion constants from nonadiabatic molecular dynamics simulations and Marcus-based Monte Carlo approaches. In this work, we apply machine learning models to simulate charge and exciton propagation in organic semiconductors. We show that kernel ridge regression models can be trained to predict electronic and excitonic couplings from semiempirical density functional tight binding (DFTB) reference data with very good accuracy. In simulations, the models could reproduce hole mobilities along the anthracene crystal axes to within 8.5% of the DFTB reference and 34% of the experimental results with only 1000 training data points. Using these models decreased the cost of exciton transfer simulations by one order of magnitude.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jctc.0c00246</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5460-0218</orcidid><orcidid>https://orcid.org/0000-0001-8224-5340</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2020-07, Vol.16 (7), p.4061-4070
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_2409646653
source ACS Publications
subjects Anthracene
Charge simulation
Charge transfer
Computer simulation
Couplings
Data points
Dynamics
Excitons
Machine learning
Model accuracy
Molecular dynamics
Organic materials
Organic semiconductors
Regression models
Semiconductors
Simulation
title Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20and%20Exciton%20Transfer%20Simulations%20Using%20Machine-Learned%20Hamiltonians&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Kra%CC%88mer,%20Mila&rft.date=2020-07-14&rft.volume=16&rft.issue=7&rft.spage=4061&rft.epage=4070&rft.pages=4061-4070&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.0c00246&rft_dat=%3Cproquest_cross%3E2427317573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427317573&rft_id=info:pmid/&rfr_iscdi=true