Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians

Quantum-mechanical simulations of charge and exciton transfer in molecular organic materials are a key method to increase our understanding of organic semiconductors. Our goal is to build an efficient multiscale model to predict charge-transfer mobilities and exciton diffusion constants from nonadia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2020-07, Vol.16 (7), p.4061-4070
Hauptverfasser: Krämer, Mila, Dohmen, Philipp M, Xie, Weiwei, Holub, Daniel, Christensen, Anders S, Elstner, Marcus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum-mechanical simulations of charge and exciton transfer in molecular organic materials are a key method to increase our understanding of organic semiconductors. Our goal is to build an efficient multiscale model to predict charge-transfer mobilities and exciton diffusion constants from nonadiabatic molecular dynamics simulations and Marcus-based Monte Carlo approaches. In this work, we apply machine learning models to simulate charge and exciton propagation in organic semiconductors. We show that kernel ridge regression models can be trained to predict electronic and excitonic couplings from semiempirical density functional tight binding (DFTB) reference data with very good accuracy. In simulations, the models could reproduce hole mobilities along the anthracene crystal axes to within 8.5% of the DFTB reference and 34% of the experimental results with only 1000 training data points. Using these models decreased the cost of exciton transfer simulations by one order of magnitude.
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.0c00246