Artificial Chemist: An Autonomous Quantum Dot Synthesis Bot

The optimal synthesis of advanced nanomaterials with numerous reaction parameters, stages, and routes, poses one of the most complex challenges of modern colloidal science, and current strategies often fail to meet the demands of these combinatorially large systems. In response, an Artificial Chemis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-07, Vol.32 (30), p.e2001626-n/a
Hauptverfasser: Epps, Robert W., Bowen, Michael S., Volk, Amanda A., Abdel‐Latif, Kameel, Han, Suyong, Reyes, Kristofer G., Amassian, Aram, Abolhasani, Milad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The optimal synthesis of advanced nanomaterials with numerous reaction parameters, stages, and routes, poses one of the most complex challenges of modern colloidal science, and current strategies often fail to meet the demands of these combinatorially large systems. In response, an Artificial Chemist is presented: the integration of machine‐learning‐based experiment selection and high‐efficiency autonomous flow chemistry. With the self‐driving Artificial Chemist, made‐to‐measure inorganic perovskite quantum dots (QDs) in flow are autonomously synthesized, and their quantum yield and composition polydispersity at target bandgaps, spanning 1.9 to 2.9 eV, are simultaneously tuned. Utilizing the Artificial Chemist, eleven precision‐tailored QD synthesis compositions are obtained without any prior knowledge, within 30 h, using less than 210 mL of total starting QD solutions, and without user selection of experiments. Using the knowledge generated from these studies, the Artificial Chemist is pre‐trained to use a new batch of precursors and further accelerate the synthetic path discovery of QD compositions, by at least twofold. The knowledge‐transfer strategy further enhances the optoelectronic properties of the in‐flow synthesized QDs (within the same resources as the no‐prior‐knowledge experiments) and mitigates the issues of batch‐to‐batch precursor variability, resulting in QDs averaging within 1 meV from their target peak emission energy. Fully autonomous colloidal synthesis studies implementing a self‐driving microfluidic platform with machine‐learning‐based experiment selection achieve unassisted material exploration. Halide‐exchanged cesium lead bromide quantum dots are optimized simultaneously for photoluminescence quantum yield, polydispersity, and peak emission energy, independent of user intervention. Eleven target emissions are reached within 30 h and 210 mL of starting quantum dots and without prior knowledge.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202001626