Registration of digital dental models and cone-beam computed tomography images using 3-dimensional planning software: Comparison of the accuracy according to scanning methods and software
The registration of cone-beam computed tomography (CBCT) images and digital dental models is required for the design and manufacturing of dental devices such as implant guides and surgical wafers. This study aims to register intraoral scan (IS) models and cast scan (CS) models onto CBCT images using...
Gespeichert in:
Veröffentlicht in: | American journal of orthodontics and dentofacial orthopedics 2020-06, Vol.157 (6), p.843-851 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The registration of cone-beam computed tomography (CBCT) images and digital dental models is required for the design and manufacturing of dental devices such as implant guides and surgical wafers. This study aims to register intraoral scan (IS) models and cast scan (CS) models onto CBCT images using 3-dimensional (3D) planning software and evaluate the registration accuracy according to scanning methods and 3D planning software.
The CBCT image of an artificial skull model with reference markers was taken. The CS model and the IS model were obtained from the same skull model, registered onto the CBCT image using 3D planning software packages providing manual registration (MR) function and point-based registration (PR) functions, and set as the experimental groups. After registration, shell to shell deviations and positional differences between the reference model and the experimental models were evaluated.
The shell to shell deviations ranged from 0.03 to 0.18 mm. Deviations in both the maxilla and mandible were significantly different according to scanning methods and software packages. In the anteroposterior direction, the IS-MR and CS-MR groups showed significantly different positions. In the superoinferior direction, the MR and PR groups showed significantly different positions.
The registration using the PR function of the 3D planning software packages was significantly more accurate than the registration using the MR function. There was no significant difference between the registrations using the IS model and the CS model when using the PR functions.
•CBCT images and digital dental models could be registered using the 3D planning software.•There are significant differences between the manual and the point-based registrations.•Using the point-based registration, there is no significant difference according to scanner types. |
---|---|
ISSN: | 0889-5406 1097-6752 |
DOI: | 10.1016/j.ajodo.2019.12.013 |