The antioxidant defense system in Chinese jujube is triggered to cope with phytoplasma invasion

Reactive oxygen species (ROS) in plants increase dramatically under pathogen attack, and the antioxidant defense system is then triggered to protect the plant against the ROS. Jujube witches' broom disease (JWB), caused by phytoplasma, is a destructive disease of Chinese jujube. The results of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tree physiology 2020-10, Vol.40 (10), p.1437-1449
Hauptverfasser: Xue, Chaoling, Liu, Zhiguo, Wang, Lihu, Li, Hongtai, Gao, Weilin, Liu, Mengjun, Zhao, Zhihui, Zhao, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reactive oxygen species (ROS) in plants increase dramatically under pathogen attack, and the antioxidant defense system is then triggered to protect the plant against the ROS. Jujube witches' broom disease (JWB), caused by phytoplasma, is a destructive disease of Chinese jujube. The results of fluorescence-based measurement revealed that ROS were overproduced within jujube leaves after phytoplasma invasion. Furthermore, analysis based on mRNA and metabolite levels revealed that ascorbic acid (AsA) metabolism was strengthened under phytoplasma stress. The high expression of genes involved in the AsA/glutathione (GSH) cycle and thioredoxin (Trx) synthesis in diseased leaves indicated that GSH and Trx actively respond to phytoplasma infection. Moreover, higher activities of enzymatic antioxidants and the upregulated expression of related genes were confirmed in diseased tissues. Both nonenzymatic and enzymatic antioxidants in the host jujube were strongly stimulated to cope with ROS caused by phytoplasma stress. Compared with that in the susceptible variety, the activities of glutathione S-transferase and peroxidase in the resistant variety at the earlier infection stage were higher, indicating that enzymes might be involved in the resistance to phytoplasma. These results highlight the roles of the antioxidant defense system of the host plant in the tolerance to phytoplasma invasion.
ISSN:1758-4469
1758-4469
DOI:10.1093/treephys/tpaa067