Comparison of two treatments in the presence of competing risks
Summary Competing risks data arise frequently in clinical trials, and a common problem encountered is the overall homogeneity between two groups. In competing risks analysis, when the proportional subdistribution hazard assumption is violated or two cumulative incidence function (CIF) curves cross;...
Gespeichert in:
Veröffentlicht in: | Pharmaceutical statistics : the journal of the pharmaceutical industry 2020-11, Vol.19 (6), p.746-762 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Competing risks data arise frequently in clinical trials, and a common problem encountered is the overall homogeneity between two groups. In competing risks analysis, when the proportional subdistribution hazard assumption is violated or two cumulative incidence function (CIF) curves cross; currently, the most commonly used testing methods, for example, the Gray test and the Pepe and Mori test, may lead to a significant loss of statistical testing power. In this article, we propose a testing method based on the area between the CIF curves (ABC). The ABC test captures the difference over the whole time interval for which survival information is available for both groups and is not based on any special assumptions regarding the underlying distributions. The ABC test was also extended to test short‐term and long‐term effects. We also consider a combined test and a two‐stage procedure based on this new method, and a bootstrap resampling procedure is suggested in practice to approximate the limiting distribution of the combined test and two‐stage test. An extensive series of Monte Carlo simulations is conducted to investigate the power and the type I error rate of the methods. In addition, based on our simulations, our proposed TS, Comb, and ABC tests have a relatively high power in most situations. In addition, the methods are illustrated using two different datasets with different CIF situations. |
---|---|
ISSN: | 1539-1604 1539-1612 |
DOI: | 10.1002/pst.2028 |