Microwave Spectroscopy Reveals the Quantum Geometric Tensor of Topological Josephson Matter

Quantization effects due to topological invariants such as Chern numbers have become very relevant in many systems, yet key quantities such as the quantum geometric tensor providing local information about quantum states remain experimentally difficult to access. Recently, it has been shown that mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-05, Vol.124 (19), p.197002-197002, Article 197002
Hauptverfasser: Klees, R L, Rastelli, G, Cuevas, J C, Belzig, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantization effects due to topological invariants such as Chern numbers have become very relevant in many systems, yet key quantities such as the quantum geometric tensor providing local information about quantum states remain experimentally difficult to access. Recently, it has been shown that multiterminal Josephson junctions constitute an ideal platform to synthesize topological systems in a controlled manner. We theoretically study properties of Andreev states in topological Josephson matter and demonstrate that the quantum geometric tensor of Andreev states can be extracted by synthetically polarized microwaves. The oscillator strength of the absorption rates provides direct evidence of topological quantum properties of the Andreev states.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.124.197002