Structural and Electronic Characterization of a Photoresponsive Lanthanum(III) Complex Incorporated into Electrospun Fibers for Phosphate Ester Catalysis

Herein, we present the light-induced synthesis and characterization of a La3+/spiropyran derivative complex (LaMC) and its application as a catalyst when incorporated into electrospun polycaprolactone (PCL) fibers. In addition to experimental methods, computational calculations were also essential t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-06, Vol.12 (25), p.28607-28615
Hauptverfasser: F. Reis, Izadora, Miguez, Flávio B, Vargas, Carlos A. Amaya, Menzonatto, Thiago G, Silva, Igor M. S, Verano-Braga, Thiago, Lopes, Juliana Fedoce, Brandão, Tiago A. S, De Sousa, Frederico B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, we present the light-induced synthesis and characterization of a La3+/spiropyran derivative complex (LaMC) and its application as a catalyst when incorporated into electrospun polycaprolactone (PCL) fibers. In addition to experimental methods, computational calculations were also essential to better understand the structure and electronic characteristics of LaMC. The LaMC complex was identified as a 10-coordinated structure with the La3+ ion coordinated by four oxygens from the phenolate and the carbonyl of the carboxyl acid group from both MC ligands and by six oxygens from three nitrate ligands. In addition, LaMC was capable of getting reversibly isomerized by UV or visible light cycling. All PCL fibers were successively obtained, and their morphologies, surface properties, and catalytic behavior were studied. Results showed that PCL/LaMC fibers were capable of catalyzing bis­(2,4-dinitrophenyl)­phosphate degradation efficiently. Complete hydrolysis was accomplished in only 1.5 days relative to the half-life time of 35 days for the uncatalyzed hydrolysis at pH 8.1 and 25 °C.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c03571