Does Formation of Multicellular Colonies by Choanoflagellates Affect Their Susceptibility to Capture by Passive Protozoan Predators?

Microbial eukaryotes, critical links in aquatic food webs, are unicellular, but some, such as choanoflagellates, form multicellular colonies. Are there consequences to predator avoidance of being unicellular vs. forming larger colonies? Choanoflagellates share a common ancestor with animals and are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of eukaryotic microbiology 2020-09, Vol.67 (5), p.555-565
Hauptverfasser: Kumler, William E., Jorge, Justin, Kim, Paul M., Iftekhar, Noama, Koehl, M. A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microbial eukaryotes, critical links in aquatic food webs, are unicellular, but some, such as choanoflagellates, form multicellular colonies. Are there consequences to predator avoidance of being unicellular vs. forming larger colonies? Choanoflagellates share a common ancestor with animals and are used as model organisms to study the evolution of multicellularity. Escape in size from protozoan predators is suggested as a selective factor favoring evolution of multicellularity. Heterotrophic protozoans are categorized as suspension feeders, motile raptors, or passive predators that eat swimming prey which bump into them. We focused on passive predation and measured the mechanisms responsible for the susceptibility of unicellular vs. multicellular choanoflagellates, Salpingoeca helianthica, to capture by passive heliozoan predators, Actinosphaerium nucleofilum, which trap prey on axopodia radiating from the cell body. Microvideography showed that unicellular and colonial choanoflagellates entered the predator's capture zone at similar frequencies, but a greater proportion of colonies contacted axopodia. However, more colonies than single cells were lost during transport by axopodia to the cell body. Thus, feeding efficiency (proportion of prey entering the capture zone that were engulfed in phagosomes) was the same for unicellular and multicellular prey, suggesting that colony formation is not an effective defense against such passive predators.
ISSN:1066-5234
1550-7408
DOI:10.1111/jeu.12808