Improving Fe-based heterogeneous Electro-Fenton nano catalyst using transition metals in a novel orbiting electrodes reactor

In recent decades the electro-Fenton process has widely been utilized for removing recalcitrant compounds. However, this process is accompanied by several problems such as limited working pH range, production of significant amount of iron sludge, and incapability in reusing used iron ions. Hence, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2020-10, Vol.256, p.127049-127049, Article 127049
Hauptverfasser: Zahrani, Amir Ahmadi, Ayati, Bita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent decades the electro-Fenton process has widely been utilized for removing recalcitrant compounds. However, this process is accompanied by several problems such as limited working pH range, production of significant amount of iron sludge, and incapability in reusing used iron ions. Hence, the heterogeneous electro-Fenton process is a convenient way to address these problems. One of the shortcomings of this method, in comparison with the homogeneous electro-Fenton process, is its lower reaction rate. In the first phase of this study, a heterogeneous Fe-based nanocatalyst was prepared. After optimizing the affecting parameters, three transition metals (M: Cu, Co and, Cr) were used in the second phase of the study to improve the performance of this nanocatalyst in removing the indicator pollutant (acid blue 25). The characteristics of nanocatalysts were determined via FESEM, XRD, FTIR, and N2 adsorption-desorption techniques. The results indicated an enhancement in dye removal efficiency (nearly 8 percent), and the reaction rate (nearly 64 percent) due to the nanocatalysts improved by the presence of transition metals. The reactions with Fe-based nanocatalyst containing copper ions in pH = 3, initial dye concentration = 200 mg L−1, I = 3.57 mA cm−2, nanocatalyst concentration = 100 mg L−1, electrodes angular velocity = 50 rpm, Na2SO4 concentration = 0.01 M were capable of removing 97% of dye, 79% of COD and, 65% of TOC. The nanocatalysts were used in 5 cycles, and the dye removal efficiency did not drop considerably, a feature that adds to their importance from an economic point of view. The concentration of leached transition metals into the solution was measured using the ICP-AES technique, which was less than the allowable Iranian standard concentration of discharge into the surface water bodies, thus no need for secondary treatment of wastewater. [Display omitted] •Co-existence of transition metals along with iron ions enhanced the dye removal efficiency•Orbiting electrodes indicated an increase the efficiency of decolorization•Different transition metals have different capability of decomposing in situ generated H2O2•The Degradation effect of heterogeneous catalysts were dominant in the process of dye removal•The leachate of transition metals were lower than the allowable amount of discharge
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2020.127049