Extending the Separation Space with Trapped Ion Mobility Spectrometry Improves the Accuracy of Isobaric Tag-Based Quantitation in Proteomic LC/MS/MS

Two-dimensional separation by nano-LC and trapped ion mobility spectrometry (TIMS) prior to Q/TOF tandem mass spectrometry significantly improves the accuracy of isobaric tag-based quantitation in proteome analysis without the need for additional measurement time for TIMS insertion between LC and Q/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-06, Vol.92 (12), p.8037-8040
Hauptverfasser: Ogata, Kosuke, Ishihama, Yasushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional separation by nano-LC and trapped ion mobility spectrometry (TIMS) prior to Q/TOF tandem mass spectrometry significantly improves the accuracy of isobaric tag-based quantitation in proteome analysis without the need for additional measurement time for TIMS insertion between LC and Q/TOF MS. The obtained peak capacity of up to 3300 h in LC/TIMS reduced the coisolation of precursor ions at the quadrupole analyzer, resulting in more accurate ratios of reporter ions derived from isobaric tags in product ion spectra obtained at the TOF analyzer. We also found that TIMS with a narrower quadrupole isolation window could reduce the ratio compression effect at least as effectively as the synchronous precursor selection method using MS3 scans without compromising sensitivity or coverage. Our results suggest that the 65 min gradient LC/TIMS/Q/TOF system is an excellent platform for high-throughput proteomics studies.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.0c01695