Effects of Spo0A on Clostridium acetobutylicum with an emphasis on biofilm formation

Clostridium acetobutylicum is a well-known strain for biofuel production. In previous work, it was found that this strain formed biofilm readily during fermentation processes. Biofilm formation could protect cells and enhance productivities under environmental stresses in our previous work. To explo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of microbiology & biotechnology 2020-06, Vol.36 (6), p.80-80, Article 80
Hauptverfasser: Yang, Zhengjiao, Wang, Zhenyu, Lei, Ming, Zhu, Jie, Yang, Yuhan, Wu, Shishi, Yu, Bin, Niu, Huanqing, Ying, Hanjie, Liu, Dong, Wang, Yibing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Clostridium acetobutylicum is a well-known strain for biofuel production. In previous work, it was found that this strain formed biofilm readily during fermentation processes. Biofilm formation could protect cells and enhance productivities under environmental stresses in our previous work. To explore the molecular mechanism of biofilm formation, Spo0A of C. acetobutylicum was selected to investigate its influences on biofilm formation and other physiological performances. When spo0A gene was disrupted, the spo0A mutant could hardly form biofilm. The aggregation and adhesion abilities of the spo0A mutant as well as its swarming motility were dramatically reduced compared to those of wild type strain. Sporulation was also negatively influenced by spo0A disruption, and solvent production was almost undetectable in the spo0A mutant fermentation. Furthermore, proteomic differences between wild type strain and the spo0A mutant were consistent with physiological performances. This is the first study confirming a genetic clue to C. acetobutylicum biofilm and will be valuable for biofilm optimization through genetic engineering in the future.
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-020-02859-6