Embedded Mean-Field Theory for Solution-Phase Transition-Metal Polyolefin Catalysis

Decreasing the wall-clock time of quantum mechanics/molecular mechanics (QM/MM) calculations without sacrificing accuracy is a crucial prerequisite for widespread simulation of solution-phase dynamical processes. In this work, we demonstrate the use of embedded mean-field theory (EMFT) as the QM eng...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2020-07, Vol.16 (7), p.4226-4237
Hauptverfasser: Chen, Leanne D, Lawniczak, James J, Ding, Feizhi, Bygrave, Peter J, Riahi, Saleh, Manby, Frederick R, Mukhopadhyay, Sukrit, Miller, Thomas F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Decreasing the wall-clock time of quantum mechanics/molecular mechanics (QM/MM) calculations without sacrificing accuracy is a crucial prerequisite for widespread simulation of solution-phase dynamical processes. In this work, we demonstrate the use of embedded mean-field theory (EMFT) as the QM engine in QM/MM molecular dynamics (MD) simulations to examine polyolefin catalysts in solution. We show that employing EMFT in this mode preserves the accuracy of hybrid-functional DFT in the QM region, while providing up to 20-fold reductions in the cost per SCF cycle, thereby increasing the accessible simulation time-scales. We find that EMFT reproduces DFT-computed binding energies and optimized bond lengths to within chemical accuracy, as well as consistently ranking conformer stability. Furthermore, solution-phase EMFT/MM simulations provide insight into the interaction strength of strongly coordinating and bulky counterions.
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.0c00169