Adsorption of phenanthrene from aqueous solutions by biochar derived from an ammoniation-hydrothermal method

An innovative ammoniation-hydrothermal method of biochar production was developed for the adsorption of phenanthrene (PHE) from aqueous solutions in this paper. Phragmites australis (PA) was used to produce biochar in a hydrothermal kettle at 280 °C in muffle furnace using urea as an ammoniation rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2020-09, Vol.733, p.139267-139267, Article 139267
Hauptverfasser: Wang, Xiaoqing, Guo, Zizhang, Hu, Zhen, Ngo, HuuHao, Liang, Shuang, Zhang, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An innovative ammoniation-hydrothermal method of biochar production was developed for the adsorption of phenanthrene (PHE) from aqueous solutions in this paper. Phragmites australis (PA) was used to produce biochar in a hydrothermal kettle at 280 °C in muffle furnace using urea as an ammoniation reagent. Characterizations were executed by scanning electron microscope (SEM), N2 adsorption/desorption isotherms, X-ray diffraction (XRD), elemental analysis, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) to explore its morphological, physical, and chemical properties. Batch experiments of PHE adsorption were carried out to study the adsorption isotherms and kinetics. Quantum chemistry computational simulations were employed based on density functional theory (DFT) to establish and optimize adsorption configurations and analyze the biochar's structural effects on adsorption performance. Results showed that the ammoniation-hydrothermal method produced biochar with a higher surface area and a maximum equilibrium adsorption capacity of 1.97 mg/g. The adsorption fitted well with Freundlich isotherm model (R2 > 0.96) and Pseudo-second-order kinetic model (R2 > 0.82). Adsorption energy calculation revealed that the N functionalities, especially pyridine N in the N-doped biochar structure, exhibited stronger binding ability with PHE, which contributed most to the favorable adsorption ability of the ammoniation-hydrothermal biochar. [Display omitted] •The ammoniation-hydrothermal method produced biochar with enhanced surface property.•The adsorption capacity for phenanthrene on this new biochar reached 1.97 mg/g.•The ammoniation increased N functionalities on biochar surface as adsorption sites.•Pyridine N in N-doped biochar showed the strongest binding ability with phenanthrene.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.139267