Liquid Sampling-Atmospheric Pressure Glow Discharge Ionization as a Technique for the Characterization of Salt-Containing Organic Samples
Typical ionization techniques used for mass spectrometry (MS) analysis face challenges when trying to analyze organic species in a high-salt environment. Here, we present results using a recently developed ionization source, liquid sampling-atmospheric pressure glow discharge (LS-APGD), for marine-r...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2020-07, Vol.92 (13), p.8845-8851 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Typical ionization techniques used for mass spectrometry (MS) analysis face challenges when trying to analyze organic species in a high-salt environment. Here, we present results using a recently developed ionization source, liquid sampling-atmospheric pressure glow discharge (LS-APGD), for marine-relevant salt-containing organic samples. Using two representative sample types, a triglyceride mixture and dissolved organic matter, this method is compared to traditional electrospray ionization (ESI) under saline and neat conditions. LS-APGD produced equal or higher (15%+) ion intensities than those of ESI for both salt-containing and neat samples, although important differences linked with adduct formation in high-salt conditions explain the molecular species observed. For all sample types, LS-APGD observed a higher diversity of molecules under optimized settings (0.25 mm electrode spacing at 20 mA) compared to traditional ESI. Furthermore, because the LS-APGD source ionizes molecular species in a ∼1 mm3 volume plasma using a low-power source, there is the potential for this method to be applied in field studies, eliminating desalting procedures, which can be time-consuming and nonideal for low-concentration species. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.0c00361 |