Therapeutic mechanism of human neural stem cell-derived extracellular vesicles against hypoxia-reperfusion injury in vitro

This study aimed to explore that the human neural stem cell derived extracellular vesicles (hNSC-EVs) have therapeutic effect on neuronal hypoxia-reperfusion (H/R) injured neurons in vitro by mediating the nuclear translocation of NF-E2-related factor 2 (Nrf2) to regulate the expression of downstrea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2020-08, Vol.254, p.117772-8, Article 117772
Hauptverfasser: Liu, Qingyue, Tan, Yi, Qu, Tingyu, Zhang, Jianhui, Duan, Xuexia, Xu, Hongpeng, Mu, Yue, Ma, Heran, Wang, Fengshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to explore that the human neural stem cell derived extracellular vesicles (hNSC-EVs) have therapeutic effect on neuronal hypoxia-reperfusion (H/R) injured neurons in vitro by mediating the nuclear translocation of NF-E2-related factor 2 (Nrf2) to regulate the expression of downstream oxidative kinases. The neuroprotective effects of hNSC-EVs were evaluated in an in vitro neuronal H/R model. Three parameters of hNSC-EVs, structure, phenotype and particle size, were characterized. At the cellular level, a human neuron cerebral ischemic reperfusion (CIR) injury model was constructed. Cell viability, apoptosis, and the amount of reactive oxygen species (ROS) were detected using real-time cell analysis (RTCA), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and dichloro-dihydro-fluorescein diacetate (DCFH-DA), respectively. The neuronal axonal elongation was assessed by Opera Phenix™ screening system. The angiogenesis of human umbilical vein endothelial cells (HUVECs) was evaluated by co-culturing HUVECs with hNSC-EVs in Matrigel. The expression of apoptosis and oxidative stress-related proteins in cells and the nuclear transfer of Nrf2 following hypoxia-reperfusion (H/R) was verified by Western-blotting. We found that the hNSC-EVs can promote the survival of post-H/R injury neurons, inhibit neuronal apoptosis, and enhance nuclear transfer of Nrf2, in response to oxidative stress. We also found the hNSC-EVs can promote the elongation of neuronal axons and the angiogenesis of HUVECs. At present, there is no effective therapy for CIR injury. We suggest that the hNSC-EVs could be considered a new strategy to achieve nerve repair for the treatment of neurological diseases, especially stroke. •hNSC-EVs inhibit neuronal apoptosis, promote axon elongation and angiogenesis.•hNSC-EVs inhibit neuronal apoptosis by protecting neurons from oxidative damage.•hNSC-EVs promote the nuclear translocation of Nrf2.
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2020.117772