Silent rain: does the atmosphere-mediated connectivity between microbiomes influence bacterial evolutionary rates?

ABSTRACT Air carries a vast number of bacteria and viruses over great distances all the time. This leads to continuous introduction of foreign genetic material to local, established microbial communities. In this perspective, I ask whether this silent rain may have a slowing effect on the overall ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS microbiology ecology 2020-07, Vol.96 (7), p.1
1. Verfasser: Jalasvuori, Matti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Air carries a vast number of bacteria and viruses over great distances all the time. This leads to continuous introduction of foreign genetic material to local, established microbial communities. In this perspective, I ask whether this silent rain may have a slowing effect on the overall evolutionary rates in the microbial biosphere. Arguably, the greater the genetic divergence between gene ‘donors’ and ‘recipients’, the greater the chance that the gene product has a deleterious epistatic interaction with other gene products in its genetic environment. This is due to the long-term absence of check for mutual compatibility. As such, if an organism is extensively different from other bacteria, genetic innovations are less probable to fit to the genome. Here, genetic innovation would be anything that elevates the fitness of the gene vehicle (e.g. bacterium) over its contemporaries. Adopted innovations increase the fitness of the compatible genome over incompatible ones, thus possibly tempering the pace at which mutations accumulate in existing genomes over generations. I further discuss the transfer of bacteriophages through atmosphere and potential effects that this may have on local dynamics and perhaps phage survival. Does the continuous atmospheric transfer of microbes between habitats select for genetic compatibility in bacteria?
ISSN:0168-6496
1574-6941
DOI:10.1093/femsec/fiaa096