Soil microbes of an urban remnant riparian zone have greater potential for N removal than a degraded riparian zone

Summary Soils in the riparian zone, the interface between terrestrial and aquatic ecosystems, may decrease anthropogenic nitrogen (N) loads to streams through microbial transformations (e.g., denitrification). However, the ecological functioning of riparian zones is often compromised due to degraded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2020-08, Vol.22 (8), p.3302-3314
Hauptverfasser: Middleton, Jen A., Sosa, Laura L., Martin, Belinda C., Jones, Davey L., Gleeson, Deirdre B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Soils in the riparian zone, the interface between terrestrial and aquatic ecosystems, may decrease anthropogenic nitrogen (N) loads to streams through microbial transformations (e.g., denitrification). However, the ecological functioning of riparian zones is often compromised due to degraded conditions (e.g., vegetation clearing). Here we compare the efficacy of an urban remnant and a cleared riparian zone for supporting a putative denitrifying microbial community using 16S rRNA sequencing and quantitative polymerase chain reaction of archaeal and bacterial nitrogen cycling genes. Although we had no direct measure of denitrification rates, we found clear patterns in the microbial communities between the sites. Greater abundance of N‐cycling genes was predicted by greater soil ammonium (N‐NH4), organic phosphorus, and C:N. At the remnant site, we found positive correlations between microbial community composition, which was dominated by putative N oxidisers (Nitrosomonadaceae, Nitrospiraceae and Nitrosotaleaceae), and abundance of ammonia‐oxidizing archaea (AOA), nirS, nirK and nosZ, whereas the cleared site had lower abundance of N‐oxidisers and N cycling genes. These results were especially profound for the remnant riparian fringe, which suggests that this region maintains suitable soil conditions (via diverse vegetation structure and periodic saturation) to support putative N cyclers, which could amount to higher potential for N removal.
ISSN:1462-2912
1462-2920
DOI:10.1111/1462-2920.15092