Legacy effects of nitrogen and phosphorus additions on vegetation and carbon stocks of upland heaths
• Soil carbon (C) pools and plant community composition are regulated by nitrogen (N) and phosphorus (P) availability. Atmospheric N deposition impacts ecosystem C storage, but the direction of response varies between systems. Phosphorus limitation may constrain C storage response to N, hence P appl...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2020-10, Vol.228 (1), p.226-237 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | • Soil carbon (C) pools and plant community composition are regulated by nitrogen (N) and phosphorus (P) availability. Atmospheric N deposition impacts ecosystem C storage, but the direction of response varies between systems. Phosphorus limitation may constrain C storage response to N, hence P application to increase plant productivity and thus C sequestration has been suggested.
• We revisited a 23-yr-old field experiment where N and P had been applied to upland heath, a widespread habitat supporting large soil C stocks. At 10 yr after the last nutrient application we quantified long-term changes in vegetation composition and in soil and vegetation C and P stocks.
• Nitrogen addition, particularly when combined with P, strongly influenced vegetation composition, favouring grasses over Calluna vulgaris, and led to a reduction in vegetation C stocks. However, soil C stocks did not respond to nutrient treatments. We found 40% of the added P had accumulated in the soil.
• This study showed persistent effects of N and N + P on vegetation composition, whereas effects of P alone were small and showed recovery. We found no indication that P application could mitigate the effects of N on vegetation or increase C sequestration in this system. |
---|---|
ISSN: | 0028-646X 1469-8137 |
DOI: | 10.1111/nph.16671 |