Paper-Based Preconcentration and Isolation of Microvesicles and Exosomes
Microvesicles and exosomes are small membranous vesicles released to the extracellular environment and circulated throughout the body. Because they contain various parental cell-derived biomolecules such as DNA, mRNA, miRNA, proteins, and lipids, their enrichment and isolation are critical steps for...
Gespeichert in:
Veröffentlicht in: | Journal of visualized experiments 2020-04 (158), Article 61292 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microvesicles and exosomes are small membranous vesicles released to the extracellular environment and circulated throughout the body. Because they contain various parental cell-derived biomolecules such as DNA, mRNA, miRNA, proteins, and lipids, their enrichment and isolation are critical steps for their exploitation as potential biomarkers for clinical applications. However, conventional isolation methods (e.g., ultracentrifugation) cause significant loss and damage to microvesicles and exosomes. These methods also require multiple repetitive steps of ultracentrifugation, loading, and wasting of reagents. This article describes a detailed method to fabricate an origami-paper-based device (Exo-PAD) designed for the effective enrichment and isolation of microvesicles and exosomes in a simple manner. The unique design of the Exo-PAD, consisting of accordion-like multifolded layers with convergent sample areas, is integrated with the ion concentration polarization technique, thereby enabling fivefold enrichment of the microvesicles and exosomes on specific layers. In addition, the enriched microvesicles and exosomes are isolated by simply unfolding the Exo-PAD. |
---|---|
ISSN: | 1940-087X 1940-087X |
DOI: | 10.3791/61292 |