Probiotic Properties of Lactobacilli and Their Ability to Inhibit the Adhesion of Enteropathogenic Bacteria to Caco-2 and HT-29 Cells

We evaluated the probiotic properties of lactic acid bacteria using resistance, safety, and functional assays. A preliminary subtractive screening of nineteen strains was performed based on their survival in simulated gastric and intestinal juice, and cell surface characteristics (hydrophobicity and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probiotics and antimicrobial proteins 2021-02, Vol.13 (1), p.102-112
Hauptverfasser: Fonseca, Hugo Calixto, de Sousa Melo, Dirceu, Ramos, Cíntia Lacerda, Dias, Disney Ribeiro, Schwan, Rosane Freitas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We evaluated the probiotic properties of lactic acid bacteria using resistance, safety, and functional assays. A preliminary subtractive screening of nineteen strains was performed based on their survival in simulated gastric and intestinal juice, and cell surface characteristics (hydrophobicity and auto-aggregation). Five strains were selected for further characterization, which included the assessment of their co-aggregation to pathogens, phenol tolerance, antimicrobial activity, and safety. Moreover, their adhesion to Caco-2 and HT-29 cells and the ability to inhibit pathogenic bacteria adhesion were evaluated. All strains had high (≥ 80.0%) survival rates in gastric and intestinal juices. Among them, Lactobacillus brevis CCMA 1284, L. plantarum CCMA 0743, and L. plantarum CCMA 0359 exhibited higher hydrophobicity (95.33, 96.06, and 80.02%, respectively), while L. paracasei CCMA 0504 and L. paracasei CCMA 0505 had the highest auto-aggregation values (45.36 and 52.66%, respectively). However, these last two strains were positive for the DNAse test, which is a safety concern. The CCMA 0359 and CCMA 1284 strains did not show antimicrobial activity, while the CCMA 0505 strain had a higher percentage of adhesion (4.75%) to Caco-2 cells. In the simulated competition and exclusion assays, the CCMA 0743 strain was able to reduce Salmonella adhesion to both cells (Caco-2 and HT-29), but only the CCMA 0743 and CCMA 0505 strains inhibited Escherichia coli adhesion to HT-29 cells in the competition assay. According to the results of these evaluated attributes, this strain showed to be an excellent candidate for probiotic use.
ISSN:1867-1306
1867-1314
DOI:10.1007/s12602-020-09659-2