Automated detection and classification of shoulder arthroplasty models using deep learning
Objective To develop and evaluate the performance of deep convolutional neural networks (DCNN) to detect and identify specific total shoulder arthroplasty (TSA) models. Materials and methods We included 482 radiography studies obtained from publicly available image repositories with native shoulders...
Gespeichert in:
Veröffentlicht in: | Skeletal radiology 2020-10, Vol.49 (10), p.1623-1632 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1632 |
---|---|
container_issue | 10 |
container_start_page | 1623 |
container_title | Skeletal radiology |
container_volume | 49 |
creator | Yi, Paul H. Kim, Tae Kyung Wei, Jinchi Li, Xinning Hager, Gregory D. Sair, Haris I. Fritz, Jan |
description | Objective
To develop and evaluate the performance of deep convolutional neural networks (DCNN) to detect and identify specific total shoulder arthroplasty (TSA) models.
Materials and methods
We included 482 radiography studies obtained from publicly available image repositories with native shoulders, reverse TSA (RTSA) implants, and five different TSA models. We trained separate ResNet DCNN–based binary classifiers to (1) detect the presence of shoulder arthroplasty implants, (2) differentiate between TSA and RTSA, and (3) differentiate between the five TSA models, using five individual classifiers for each model, respectively. Datasets were divided into training, validation, and test datasets. Training and validation datasets were 20-fold augmented. Test performances were assessed with area under the receiver-operating characteristic curves (AUC-ROC) analyses. Class activation mapping was used to identify distinguishing imaging features used for DCNN classification decisions.
Results
The DCNN for the detection of the presence of shoulder arthroplasty implants achieved an AUC-ROC of 1.0, whereas the AUC-ROC for differentiation between TSA and RTSA was 0.97. Class activation map analysis demonstrated the emphasis on the characteristic arthroplasty components in decision-making. DCNNs trained to distinguish between the five TSA models achieved AUC-ROCs ranging from 0.86 for Stryker Solar to 1.0 for Zimmer Bigliani-Flatow with class activation map analysis demonstrating an emphasis on unique implant design features.
Conclusion
DCNNs can accurately identify the presence of and distinguish between TSA & RTSA, and classify five specific TSA models with high accuracy. The proof of concept of these DCNNs may set the foundation for an automated arthroplasty atlas for rapid and comprehensive model identification. |
doi_str_mv | 10.1007/s00256-020-03463-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2404048284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A731360036</galeid><sourcerecordid>A731360036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-bec42340d7da9d39901ee8f965c5551a55e7d12455b22dcb46ee0741658b83a3</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2qqCy0X6CHKlIvvQT8P8lxhShUQuqFUy-WY08Wo8Te2s6Bb9-BpaBWVTUHy-PfexrPI-Qjo2eM0u68UMqVbimnLRVSi1a8IRsmBW850-wt2VChZcuF7I_JSSn3lLKuU_odORZcMiU6tiE_tmtNi63gGw8VXA0pNjb6xs22lDAFZ59aaWrKXVpnD7mxud7ltEegPjRL8jCXZi0h7tAC9s0MNke8vSdHk50LfHg-T8nt18vbi-v25vvVt4vtTeuk5LUdwUmckfrO28GLYaAMoJ8GrZxSilmloPOMS6VGzr0bpQagnWRa9WMvrDglXw62-5x-rlCqWUJxMM82QlqL4ZJi9byXiH7-C71Pa444HFJCczbg3l6pnZ3BhDilmq17NDXbTjChKe4VqbN_UFgeluBShClg_w8BPwhcTqVkmMw-h8XmB8OoeczTHPI0mKd5ytMIFH16nngdF_Avkt8BIiAOQMGnuIP8-qX_2P4Cq9epKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436219161</pqid></control><display><type>article</type><title>Automated detection and classification of shoulder arthroplasty models using deep learning</title><source>SpringerNature Journals</source><creator>Yi, Paul H. ; Kim, Tae Kyung ; Wei, Jinchi ; Li, Xinning ; Hager, Gregory D. ; Sair, Haris I. ; Fritz, Jan</creator><creatorcontrib>Yi, Paul H. ; Kim, Tae Kyung ; Wei, Jinchi ; Li, Xinning ; Hager, Gregory D. ; Sair, Haris I. ; Fritz, Jan</creatorcontrib><description>Objective
To develop and evaluate the performance of deep convolutional neural networks (DCNN) to detect and identify specific total shoulder arthroplasty (TSA) models.
Materials and methods
We included 482 radiography studies obtained from publicly available image repositories with native shoulders, reverse TSA (RTSA) implants, and five different TSA models. We trained separate ResNet DCNN–based binary classifiers to (1) detect the presence of shoulder arthroplasty implants, (2) differentiate between TSA and RTSA, and (3) differentiate between the five TSA models, using five individual classifiers for each model, respectively. Datasets were divided into training, validation, and test datasets. Training and validation datasets were 20-fold augmented. Test performances were assessed with area under the receiver-operating characteristic curves (AUC-ROC) analyses. Class activation mapping was used to identify distinguishing imaging features used for DCNN classification decisions.
Results
The DCNN for the detection of the presence of shoulder arthroplasty implants achieved an AUC-ROC of 1.0, whereas the AUC-ROC for differentiation between TSA and RTSA was 0.97. Class activation map analysis demonstrated the emphasis on the characteristic arthroplasty components in decision-making. DCNNs trained to distinguish between the five TSA models achieved AUC-ROCs ranging from 0.86 for Stryker Solar to 1.0 for Zimmer Bigliani-Flatow with class activation map analysis demonstrating an emphasis on unique implant design features.
Conclusion
DCNNs can accurately identify the presence of and distinguish between TSA & RTSA, and classify five specific TSA models with high accuracy. The proof of concept of these DCNNs may set the foundation for an automated arthroplasty atlas for rapid and comprehensive model identification.</description><identifier>ISSN: 0364-2348</identifier><identifier>EISSN: 1432-2161</identifier><identifier>DOI: 10.1007/s00256-020-03463-3</identifier><identifier>PMID: 32415371</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activation analysis ; Arthroplasty ; Artificial intelligence ; Artificial neural networks ; Automation ; Biomedical materials ; Classification ; Classifiers ; Datasets ; Decision analysis ; Decision making ; Deep learning ; Identification methods ; Imaging ; Joint surgery ; Mapping ; Medicine ; Medicine & Public Health ; Model accuracy ; Neural networks ; Nuclear Medicine ; Orthopedics ; Pathology ; Radiography ; Radiology ; Scientific Article ; Shoulder ; Surgical implants ; Training ; Transplants & implants</subject><ispartof>Skeletal radiology, 2020-10, Vol.49 (10), p.1623-1632</ispartof><rights>ISS 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>ISS 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-bec42340d7da9d39901ee8f965c5551a55e7d12455b22dcb46ee0741658b83a3</citedby><cites>FETCH-LOGICAL-c442t-bec42340d7da9d39901ee8f965c5551a55e7d12455b22dcb46ee0741658b83a3</cites><orcidid>0000-0003-4456-3043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00256-020-03463-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00256-020-03463-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32415371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yi, Paul H.</creatorcontrib><creatorcontrib>Kim, Tae Kyung</creatorcontrib><creatorcontrib>Wei, Jinchi</creatorcontrib><creatorcontrib>Li, Xinning</creatorcontrib><creatorcontrib>Hager, Gregory D.</creatorcontrib><creatorcontrib>Sair, Haris I.</creatorcontrib><creatorcontrib>Fritz, Jan</creatorcontrib><title>Automated detection and classification of shoulder arthroplasty models using deep learning</title><title>Skeletal radiology</title><addtitle>Skeletal Radiol</addtitle><addtitle>Skeletal Radiol</addtitle><description>Objective
To develop and evaluate the performance of deep convolutional neural networks (DCNN) to detect and identify specific total shoulder arthroplasty (TSA) models.
Materials and methods
We included 482 radiography studies obtained from publicly available image repositories with native shoulders, reverse TSA (RTSA) implants, and five different TSA models. We trained separate ResNet DCNN–based binary classifiers to (1) detect the presence of shoulder arthroplasty implants, (2) differentiate between TSA and RTSA, and (3) differentiate between the five TSA models, using five individual classifiers for each model, respectively. Datasets were divided into training, validation, and test datasets. Training and validation datasets were 20-fold augmented. Test performances were assessed with area under the receiver-operating characteristic curves (AUC-ROC) analyses. Class activation mapping was used to identify distinguishing imaging features used for DCNN classification decisions.
Results
The DCNN for the detection of the presence of shoulder arthroplasty implants achieved an AUC-ROC of 1.0, whereas the AUC-ROC for differentiation between TSA and RTSA was 0.97. Class activation map analysis demonstrated the emphasis on the characteristic arthroplasty components in decision-making. DCNNs trained to distinguish between the five TSA models achieved AUC-ROCs ranging from 0.86 for Stryker Solar to 1.0 for Zimmer Bigliani-Flatow with class activation map analysis demonstrating an emphasis on unique implant design features.
Conclusion
DCNNs can accurately identify the presence of and distinguish between TSA & RTSA, and classify five specific TSA models with high accuracy. The proof of concept of these DCNNs may set the foundation for an automated arthroplasty atlas for rapid and comprehensive model identification.</description><subject>Activation analysis</subject><subject>Arthroplasty</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Biomedical materials</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Datasets</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Identification methods</subject><subject>Imaging</subject><subject>Joint surgery</subject><subject>Mapping</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Nuclear Medicine</subject><subject>Orthopedics</subject><subject>Pathology</subject><subject>Radiography</subject><subject>Radiology</subject><subject>Scientific Article</subject><subject>Shoulder</subject><subject>Surgical implants</subject><subject>Training</subject><subject>Transplants & implants</subject><issn>0364-2348</issn><issn>1432-2161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9P3DAQxa2qqCy0X6CHKlIvvQT8P8lxhShUQuqFUy-WY08Wo8Te2s6Bb9-BpaBWVTUHy-PfexrPI-Qjo2eM0u68UMqVbimnLRVSi1a8IRsmBW850-wt2VChZcuF7I_JSSn3lLKuU_odORZcMiU6tiE_tmtNi63gGw8VXA0pNjb6xs22lDAFZ59aaWrKXVpnD7mxud7ltEegPjRL8jCXZi0h7tAC9s0MNke8vSdHk50LfHg-T8nt18vbi-v25vvVt4vtTeuk5LUdwUmckfrO28GLYaAMoJ8GrZxSilmloPOMS6VGzr0bpQagnWRa9WMvrDglXw62-5x-rlCqWUJxMM82QlqL4ZJi9byXiH7-C71Pa444HFJCczbg3l6pnZ3BhDilmq17NDXbTjChKe4VqbN_UFgeluBShClg_w8BPwhcTqVkmMw-h8XmB8OoeczTHPI0mKd5ytMIFH16nngdF_Avkt8BIiAOQMGnuIP8-qX_2P4Cq9epKg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Yi, Paul H.</creator><creator>Kim, Tae Kyung</creator><creator>Wei, Jinchi</creator><creator>Li, Xinning</creator><creator>Hager, Gregory D.</creator><creator>Sair, Haris I.</creator><creator>Fritz, Jan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4456-3043</orcidid></search><sort><creationdate>20201001</creationdate><title>Automated detection and classification of shoulder arthroplasty models using deep learning</title><author>Yi, Paul H. ; Kim, Tae Kyung ; Wei, Jinchi ; Li, Xinning ; Hager, Gregory D. ; Sair, Haris I. ; Fritz, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-bec42340d7da9d39901ee8f965c5551a55e7d12455b22dcb46ee0741658b83a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation analysis</topic><topic>Arthroplasty</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Biomedical materials</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Datasets</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Identification methods</topic><topic>Imaging</topic><topic>Joint surgery</topic><topic>Mapping</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Nuclear Medicine</topic><topic>Orthopedics</topic><topic>Pathology</topic><topic>Radiography</topic><topic>Radiology</topic><topic>Scientific Article</topic><topic>Shoulder</topic><topic>Surgical implants</topic><topic>Training</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Paul H.</creatorcontrib><creatorcontrib>Kim, Tae Kyung</creatorcontrib><creatorcontrib>Wei, Jinchi</creatorcontrib><creatorcontrib>Li, Xinning</creatorcontrib><creatorcontrib>Hager, Gregory D.</creatorcontrib><creatorcontrib>Sair, Haris I.</creatorcontrib><creatorcontrib>Fritz, Jan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Skeletal radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Paul H.</au><au>Kim, Tae Kyung</au><au>Wei, Jinchi</au><au>Li, Xinning</au><au>Hager, Gregory D.</au><au>Sair, Haris I.</au><au>Fritz, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated detection and classification of shoulder arthroplasty models using deep learning</atitle><jtitle>Skeletal radiology</jtitle><stitle>Skeletal Radiol</stitle><addtitle>Skeletal Radiol</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>49</volume><issue>10</issue><spage>1623</spage><epage>1632</epage><pages>1623-1632</pages><issn>0364-2348</issn><eissn>1432-2161</eissn><abstract>Objective
To develop and evaluate the performance of deep convolutional neural networks (DCNN) to detect and identify specific total shoulder arthroplasty (TSA) models.
Materials and methods
We included 482 radiography studies obtained from publicly available image repositories with native shoulders, reverse TSA (RTSA) implants, and five different TSA models. We trained separate ResNet DCNN–based binary classifiers to (1) detect the presence of shoulder arthroplasty implants, (2) differentiate between TSA and RTSA, and (3) differentiate between the five TSA models, using five individual classifiers for each model, respectively. Datasets were divided into training, validation, and test datasets. Training and validation datasets were 20-fold augmented. Test performances were assessed with area under the receiver-operating characteristic curves (AUC-ROC) analyses. Class activation mapping was used to identify distinguishing imaging features used for DCNN classification decisions.
Results
The DCNN for the detection of the presence of shoulder arthroplasty implants achieved an AUC-ROC of 1.0, whereas the AUC-ROC for differentiation between TSA and RTSA was 0.97. Class activation map analysis demonstrated the emphasis on the characteristic arthroplasty components in decision-making. DCNNs trained to distinguish between the five TSA models achieved AUC-ROCs ranging from 0.86 for Stryker Solar to 1.0 for Zimmer Bigliani-Flatow with class activation map analysis demonstrating an emphasis on unique implant design features.
Conclusion
DCNNs can accurately identify the presence of and distinguish between TSA & RTSA, and classify five specific TSA models with high accuracy. The proof of concept of these DCNNs may set the foundation for an automated arthroplasty atlas for rapid and comprehensive model identification.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32415371</pmid><doi>10.1007/s00256-020-03463-3</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4456-3043</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-2348 |
ispartof | Skeletal radiology, 2020-10, Vol.49 (10), p.1623-1632 |
issn | 0364-2348 1432-2161 |
language | eng |
recordid | cdi_proquest_miscellaneous_2404048284 |
source | SpringerNature Journals |
subjects | Activation analysis Arthroplasty Artificial intelligence Artificial neural networks Automation Biomedical materials Classification Classifiers Datasets Decision analysis Decision making Deep learning Identification methods Imaging Joint surgery Mapping Medicine Medicine & Public Health Model accuracy Neural networks Nuclear Medicine Orthopedics Pathology Radiography Radiology Scientific Article Shoulder Surgical implants Training Transplants & implants |
title | Automated detection and classification of shoulder arthroplasty models using deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20detection%20and%20classification%20of%20shoulder%20arthroplasty%20models%20using%20deep%20learning&rft.jtitle=Skeletal%20radiology&rft.au=Yi,%20Paul%20H.&rft.date=2020-10-01&rft.volume=49&rft.issue=10&rft.spage=1623&rft.epage=1632&rft.pages=1623-1632&rft.issn=0364-2348&rft.eissn=1432-2161&rft_id=info:doi/10.1007/s00256-020-03463-3&rft_dat=%3Cgale_proqu%3EA731360036%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436219161&rft_id=info:pmid/32415371&rft_galeid=A731360036&rfr_iscdi=true |