Impeller geometry definition of the transventricular assist device
According to the World Health Organization, cardiovascular disease is the number one cause of death worldwide, except Africa, where Acquired Immune Deficiency Syndrome is the leading cause of death. In this scenario, the ventricular assist device (VAD) remains the unique alternative to extend patien...
Gespeichert in:
Veröffentlicht in: | Artificial organs 2020-08, Vol.44 (8), p.803-810 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | According to the World Health Organization, cardiovascular disease is the number one cause of death worldwide, except Africa, where Acquired Immune Deficiency Syndrome is the leading cause of death. In this scenario, the ventricular assist device (VAD) remains the unique alternative to extend patient life until heart transplantation. At Dante Pazzanese Institute of Cardiology, the research and development of an axial flow VAD to be fully implantable within the heart was started. This pump, denominated Transventricular Assist Device (TVAD), can be surgically implanted through a small left intercostal incision in a minimally invasive manner. The goal of this work is to analyze the impeller geometries of the TVAD, to avoid high shear stresses in the fluid and aim for the best conditions to support the circulatory system using computational fluid dynamics and in vitro tests. Different rotor geometries were selected according to the literature; based on the results, the best rotor was elected. This rotor contains a pair of spiral blades of constant and relatively high pitch, which pumps liquid at a flow rate of 3 L/min at 73 mm Hg. It is also expected that this rotor presents a moderate hemolysis since the shear rate is acceptable. |
---|---|
ISSN: | 0160-564X 1525-1594 |
DOI: | 10.1111/aor.13708 |