scVAE: variational auto-encoders for single-cell gene expression data

Abstract Motivation Models for analysing and making relevant biological inferences from massive amounts of complex single-cell transcriptomic data typically require several individual data-processing steps, each with their own set of hyperparameter choices. With deep generative models one can work d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2020-08, Vol.36 (16), p.4415-4422
Hauptverfasser: Grønbech, Christopher Heje, Vording, Maximillian Fornitz, Timshel, Pascal N, Sønderby, Casper Kaae, Pers, Tune H, Winther, Ole
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Motivation Models for analysing and making relevant biological inferences from massive amounts of complex single-cell transcriptomic data typically require several individual data-processing steps, each with their own set of hyperparameter choices. With deep generative models one can work directly with count data, make likelihood-based model comparison, learn a latent representation of the cells and capture more of the variability in different cell populations. Results We propose a novel method based on variational auto-encoders (VAEs) for analysis of single-cell RNA sequencing (scRNA-seq) data. It avoids data preprocessing by using raw count data as input and can robustly estimate the expected gene expression levels and a latent representation for each cell. We tested several count likelihood functions and a variant of the VAE that has a priori clustering in the latent space. We show for several scRNA-seq datasets that our method outperforms recently proposed scRNA-seq methods in clustering cells and that the resulting clusters reflect cell types. Availability and implementation Our method, called scVAE, is implemented in Python using the TensorFlow machine-learning library, and it is freely available at https://github.com/scvae/scvae. Supplementary information Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btaa293