Spectrally broadband electro-optic modulation with nanoelectromechanical string resonators
In this paper, we present a shutter-based electro-optical modulator made of two parallel nanoelectromechanical silicon nitride string resonators. These strings are covered with electrically connected gold electrodes and actuated either by Lorentz or electrostatic forces. The in-plane string vibratio...
Gespeichert in:
Veröffentlicht in: | Optics express 2020-04, Vol.28 (8), p.12294-12301 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a shutter-based electro-optical modulator made of two parallel nanoelectromechanical silicon nitride string resonators. These strings are covered with electrically connected gold electrodes and actuated either by Lorentz or electrostatic forces. The in-plane string vibrations modulate the width of the gap between the strings. The gold electrodes on both sides of the gap act as a mobile mirror that modulate the laser light that is focused in the middle of this gap. These electro-optical modulators can achieve an optical modulation depth of almost 100% for a driving voltage lower than 1 mV at a frequency of 314 kHz. The frequency range is determined by the string resonance frequency, which can take values of the order of a few hundred kilohertz to several megahertz. The strings are driven in the strongly nonlinear regime, which allows a frequency tuning of several kilohertz without significant effect on the optical modulation depth. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.388324 |