Photonic thermometer with a sub-millikelvin resolution and broad temperature range by waveguide-microring Fano resonance

Fano resonance theoretically is an effective approach for sensitivity enhancement in photonic sensing applications, but the reported methods suffer from complicated structure and fabrication, narrow dynamic range, etc. In this article, we propose a photonic thermometer with sub-millikelvin resolutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2020-04, Vol.28 (9), p.12599-12608
Hauptverfasser: Zhang, Cheng, Kang, Guoguo, Xiong, Yiti, Xu, Tongtong, Gu, Linpeng, Gan, Xuetao, Pan, Yijie, Qu, JiFeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fano resonance theoretically is an effective approach for sensitivity enhancement in photonic sensing applications, but the reported methods suffer from complicated structure and fabrication, narrow dynamic range, etc. In this article, we propose a photonic thermometer with sub-millikelvin resolution and broad temperature measurement range implemented by a simple waveguide-microring Fano structure. An air hole is introduced at the center of the coupling region of the waveguide of an all-pass microring resonator. The effective refractive index theory is used to design its equivalent phase shift and therefore the lineshape of the Fano resonance. Experimental results showed that the quality factor and the Fano parameter of the structure were invariant in a broad temperature range. The wavelength-temperature sensitivity was 75.3 pm/℃, the intensity-temperature sensitivity at the Fano asymmetric edge was 7.49 dB/℃, and the temperature resolution was 0.25 mK within 10℃ to 90℃.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.390966