Improving the transmission efficiency of the Cassegrain optical system for Bessel-Gaussian beams
With the improvement of the transmission efficiency, the Cassegrain antenna can be widely used in space optical communication. In this paper, the Bessel-Gaussian (BG) beam is used to avoid the central energy loss of a Cassegrain antenna system. The intensity distribution and the phase distribution o...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2020-04, Vol.59 (12), p.3736-3741 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the improvement of the transmission efficiency, the Cassegrain antenna can be widely used in space optical communication. In this paper, the Bessel-Gaussian (BG) beam is used to avoid the central energy loss of a Cassegrain antenna system. The intensity distribution and the phase distribution of the BG beam passing through a Cassegrain antenna are theoretically derived and simulated. At a wavelength of 1550 nm, this method can theoretically improve the transmission efficiency to approach 100% under the situation in which the obscuration ratio is nonzero, and the transmission efficiency can reach more than 80% when obscuration ratio is in the range of from 0 to 0.1252 with $l=4$l=4. The effects of on-axial defocusing on the light field and the transmission efficiency are studied. The method proposed in this paper can remarkably improve the transmission efficiency of a Cassegrain antenna in a practical and uncomplicated approach. |
---|---|
ISSN: | 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.388121 |