Improving the transmission efficiency of the Cassegrain optical system for Bessel-Gaussian beams

With the improvement of the transmission efficiency, the Cassegrain antenna can be widely used in space optical communication. In this paper, the Bessel-Gaussian (BG) beam is used to avoid the central energy loss of a Cassegrain antenna system. The intensity distribution and the phase distribution o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2020-04, Vol.59 (12), p.3736-3741
Hauptverfasser: Liu, Renxuan, Yang, Huajun, Jiang, Ping, Qin, Yan, Caiyang, Weinan, Cao, Biao, Zhou, Miaofang, Mao, Shengqian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the improvement of the transmission efficiency, the Cassegrain antenna can be widely used in space optical communication. In this paper, the Bessel-Gaussian (BG) beam is used to avoid the central energy loss of a Cassegrain antenna system. The intensity distribution and the phase distribution of the BG beam passing through a Cassegrain antenna are theoretically derived and simulated. At a wavelength of 1550 nm, this method can theoretically improve the transmission efficiency to approach 100% under the situation in which the obscuration ratio is nonzero, and the transmission efficiency can reach more than 80% when obscuration ratio is in the range of from 0 to 0.1252 with $l=4$l=4. The effects of on-axial defocusing on the light field and the transmission efficiency are studied. The method proposed in this paper can remarkably improve the transmission efficiency of a Cassegrain antenna in a practical and uncomplicated approach.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.388121