Multiple Enhancement Effects of Crown Ether in Tröger's Base Polymers on the Performance of Anion Exchange Membranes

The development of anion exchange membranes (AEMs) is hindered by the trade-off of ionic conductivity, alkaline stability, and mechanical properties. Tröger's base polymers (Tb-polymers) are recognized as promising membrane materials to overcome these obstacles. Herein, the AEMs made from Tb-po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-06, Vol.12 (22), p.24806-24816
Hauptverfasser: Yang, Qian, Cai, Yuan Yuan, Zhu, Zhao Yu, Sun, Li Xuan, Choo, Yvonne Shuen Lann, Zhang, Qiu Gen, Zhu, Ai Mei, Liu, Qing Lin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of anion exchange membranes (AEMs) is hindered by the trade-off of ionic conductivity, alkaline stability, and mechanical properties. Tröger's base polymers (Tb-polymers) are recognized as promising membrane materials to overcome these obstacles. Herein, the AEMs made from Tb-poly(crown ether)s (Tb-PCEs) show good comprehensive performance. The influence of crown ether on the conductivity and alkaline stability of AEMs has been investigated in detail. The formation of hydronium ion-crown ether complexes and an obvious microphase-separated structure formed by the existence of crown ether can enhance the conductivity of the AEMs. The maximum OH conductivity of 141.5 mS cm is achieved from the Tb-PCEs based AEM (Tb-PCE-1) at 80 °C in ultrapure water. The ion-dipole interaction of the Na with crown ether can protect the quaternary ammonium from the attack of OH to improve the alkaline stability of AEMs. After 675 h of alkaline treatment, the OH conductivity of Tb-PCE-1 decreases by only 6%. The Tb-PCE-1-based single cell shows a peak power density of 0.202 W cm at 80 °C. The prominent physicochemical properties are attributed to the well-developed microstructure of the Tb-PCEs, as revealed by TEM, AFM, and SAXS observations.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c05411