Amperometric immunosensor based on covalent organic frameworks and Pt/Ru/C nanoparticles for the quantification of C-reactive protein
An ultrasensitive and nonenzymatic electrochemical sandwich-type immunoassay using covalent organic framework (COF-LZU1) material applied as a fixed matrix was developed for the determination of C-reactive protein (CRP). COFs with large specific surface area, good conductivity and stability were emp...
Gespeichert in:
Veröffentlicht in: | Mikrochimica acta (1966) 2020-06, Vol.187 (6), p.320-320, Article 320 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An ultrasensitive and nonenzymatic electrochemical sandwich-type immunoassay using covalent organic framework (COF-LZU1) material applied as a fixed matrix was developed for the determination of C-reactive protein (CRP). COFs with large specific surface area, good conductivity and stability were employed for functionalisation of the surface. Au nanoparticles were loaded on COF-LZUl to immobilise the CRP antibody (anti-CRP) on the surface of a glassy carbon electrode. Microwave method was employed for the synthesis of the Pt/Ru/C nanoparticles to imitate the protein enzyme with high catalytic activity. The as-synthesised activated carbon–supported bimetallic Pt/Ru/C nanoparticle composite was used to label secondary CRP antibody because it exhibited excellent catalytic behaviour toward hydrogen peroxide. After incubation of CRP, Pt/Ru/C-labelled anti-CRP was combined with CRP through specific antibody-antigen recognition process. The reduction current of H
2
0
2
at − 0.2 V catalysing by tag Pt/Ru/C as measured by a chronoamperometric method is proportional to the concentration of CRP. Under optimal experimental conditions, employing chronoamperometry to investigate the CRP, the obtained linear range was 0.2 to 20 ng/mL with a detection limit of 0.1 ng/mL. This immunosensor provides an attractive platform for the applicability of COF-LZU1 materials and Pt/Ru/C nanoparticles in electrochemical assays.
Graphical abstract
An ultrasensitive and nonenzymatic electrochemical immunoassay using covalent organic frameworks (COF-LZU1) material as the fixed matrix was developed for the detection of C-reactive protein (CRP). Microwave method was employed to synthesis the bimetallic metal composites Pt/Ru/C nanoparticles, which exhibited excellent catalytic behavior toward small molecules H
2
O
2
. COFs with large specific surface area, good conductivity and stability were employed for surface functionalization. Our proposed biosensor is highly sensitive, with the detection limit of 0.1 ng/mL. |
---|---|
ISSN: | 0026-3672 1436-5073 |
DOI: | 10.1007/s00604-020-04286-8 |