Environmental variables drive phenological events of anemocoric plants and enhance diaspore dispersal potential: A new wind-based approach

Phenological studies of Brazilian savanna vegetation have described a generalized phenological pattern for all species, mainly based on rainfall and temperature. Few studies have considered wind as an explanatory factor; abiotic factors may impact differently on phenophases, and one phenophase may i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2020-08, Vol.730, p.139039-139039, Article 139039
Hauptverfasser: Novaes, Letícia Rodrigues, Calixto, Eduardo Soares, Oliveira, Marcos Lima de, Alves-de-Lima, Larissa, Almeida, Odenir de, Torezan-Silingardi, Helena Maura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phenological studies of Brazilian savanna vegetation have described a generalized phenological pattern for all species, mainly based on rainfall and temperature. Few studies have considered wind as an explanatory factor; abiotic factors may impact differently on phenophases, and one phenophase may influence the performance of another. Thus, we aim to describe the phenological patterns of five anemocoric plant species (Aspidosperma tomentosum, Dalbergia miscolobium, Kielmeyera coriacea, Peixotoa tomentosa and Qualea multiflora) in the face of different climatic conditions, mainly evaluating the effects of wind on the ripe diaspore. We addressed three main questions: (1) What is the phenological behavior of each of these five anemocoric species in a seasonal environment? (2) Which climatic variables best explain each phenophase? (3) Does the dispersal of ripe diaspores peak shortly after deciduousness? We found that (i) our focal species showed similar phenological patterns, except for the floral bud and flower phenophases of two species (A. tomentosum and P. tomentosa), and the young fruit phase; (ii) each abiotic variable has a specific level of influence for each phenophase, but the most important variables were rainfall and wind speed; and (iii) the dispersal peak of ripe diaspores occurred shortly after deciduousness, and when plants had fewer leaves. We conclude that the phenological patterns of these five anemocoric plants are similar, but that the patterns observed are not necessarily those described for Cerrado species. Additionally, we found that wind is an important factor in the expression of specific phenophases, and that the performance of some phenological events can be influenced by others, especially diaspore dispersal. [Display omitted] •Wind have been underestimated in phenological studies•Phenological patterns of Brazilian savanna anemocoric species are similar•Rainfall and wind speed are main abiotic variables that triggered phenophases•Interaction between phenophases affects anemocoric dispersal•Deciduous anemocoric plants synchronize their deciduous and dispersal phenophases
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.139039