Constrained controllability in Banach spaces
The aim of this paper is to study null-controllability of the linear infinite dimensional control problem $\dot x = Ax + Bu$ where the control $u$ is constrained to lie in a convex, weakly compact subset $\Omega $ of the control space with $0 \in \Omega $. A necessary and sufficient condition for a...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 1986-11, Vol.24 (6), p.1261-1275 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this paper is to study null-controllability of the linear infinite dimensional control problem $\dot x = Ax + Bu$ where the control $u$ is constrained to lie in a convex, weakly compact subset $\Omega $ of the control space with $0 \in \Omega $. A necessary and sufficient condition for a particular initial state to be $\Omega $-null-controllable within a fixed, finite time $T$ is given. The result is extended to the case $\Omega = $ convex cone with vertex at 0. Applications to the one-dimensional heat- and wave-equation are given. |
---|---|
ISSN: | 0363-0129 1095-7138 |
DOI: | 10.1137/0324076 |