Effect of heat inactivation of blood samples on the efficacy of three detection methods of SARS-CoV-2 antibodies

To evaluate the effects of heat inactivation of blood samples at 56℃ for 30 min on the results of SARS-CoV-2 antibody detection using different methods. This retrospective study was conducted in 11 patients with established diagnosis of COVID-19 and 10 patients with diseases other than COVID- 19 in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nan fang yi ke da xue xue bao = Journal of Southern Medical University 2020-03, Vol.40 (3), p.316-320
Hauptverfasser: Xue, Xiongyan, Zhu, Changlin, Huang, Shaozhen, Pan, Lianhua, Xu, Jianhua, Li, Weixuan
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To evaluate the effects of heat inactivation of blood samples at 56℃ for 30 min on the results of SARS-CoV-2 antibody detection using different methods. This retrospective study was conducted in 11 patients with established diagnosis of COVID-19 and 10 patients with diseases other than COVID- 19 in our hospital. We collected samples of serum, plasma and whole blood from each patient between February, 12 and 18, 2020, and with a double- blind design, the samples were examined for SARS-CoV-2 antibodies before and after heat inactivation at 56 ℃ for 30 min. In all the samples, the total SARS-CoV-2 antibodies were detected using immunochromatography, and the IgM antibodies were detected using fluorescence immunochromatography; the IgM and IgG antibodies in the serum and plasma samples detected with chemiluminescence immunoassay. We compared the detection results and analyzed the correlation of semi-quantitative detection results of IgM and IgG antibodies before and after heat inactivation of the samples. With immuno-chromatography, the coincidence rate of the total SARS-CoV-2 antibody detection before and after heat inactivation of the serum and plasma samples was 90.0% in COVID-19 cases and 100.0% in the negative cases, resulting in a total coincidence rate 95.2%; for the whole blood samples, the total coincidence rates of the total SARS-CoV-2 antibodies were 100.0%. For detection of IgM antibodies in the serum, plasma and whole blood samples using fluorescence immunochromatography, the coincidence rates in SARS-CoV-2-positive and negative cases and the total coincidence rate before and after inactivation were 100.0%, 0 and 47.6%, respectively. For detection of serum IgM and IgG antibodies and plasma IgG antibodies with chemiluminescence immunoassay, the coincidence rates in SARS-CoV-2-positive and negative cases and the total coincidence rate before and after inactivation were all 100.0%, and the total coincidence rate of plasma IgM antibodies was 95.2%. Pearson correlation analysis of the semi-quantitative results of IgM and IgG detection in the serum and plasma samples showed a correlation coefficient of 0.9999 (95% : 0.9998-1.000, < 0.001) between the results before and after sample inactivation. Heat inactivation of blood samples at 56 ℃ for 30 min does not obviously affect the results of immunochromatography and chemiluminescent immunoassay for detection of SARS-COV-2 antibodies but can reduce the risk of infection for the operators. Heat-inactivated sa
ISSN:1673-4254
DOI:10.12122/j.issn.1673-4254.2020.03.03