Escherichiacoli–Specific CD4+ T Cells Have Public T-Cell Receptors and Low Interleukin 10 Production in Crohn’s Disease

Crohn’s disease (CD) likely represents decreased immune tolerance to intestinal bacterial antigens. Most CD patients have high titers of antibodies to intestinal commensal proteins, including the outer membrane porin C (OmpC) of Escherichia coli. By using major histocompatibility complex II tetramer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular gastroenterology and hepatology 2020, Vol.10 (3), p.507-526
Hauptverfasser: Uchida, Amiko M., Boden, Elisa K., James, Eddie A., Shows, Donna M., Konecny, Andrew J., Lord, James D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crohn’s disease (CD) likely represents decreased immune tolerance to intestinal bacterial antigens. Most CD patients have high titers of antibodies to intestinal commensal proteins, including the outer membrane porin C (OmpC) of Escherichia coli. By using major histocompatibility complex II tetramers, we identified an HLA-DRB1∗15:01-restricted peptide epitope of OmpC recognized by CD4+ T cells in peripheral blood mononuclear cells from HLA-DRB1∗15:01+ healthy control (HC) and CD patients. The precursor frequency of these cells in CD correlated with anti-OmpC IgA titers, but did not differ from that of HCs. In both cohorts, they showed a CD161+, integrin α4β7+ phenotype ex vivo by flow cytometry, distinct from the C-X-C Motif Chemokine Receptor 3 phenotype of autologous influenza hemagglutinin (Flu) peptide-specific T cells. The T-cell receptor α and β chains of in vitro–expanded OmpC-specific T-cell clones often contained public amino acid sequences that were identical in cells from different patients. Expanded T-cell clones from CD subjects produced significantly less interleukin (IL)10 (P < .0001) than those from HCs, and a trend toward decreased production of the T helper 2 cell–associated IL4, IL5, and IL13 by CD clones also was seen. Both HCs and CD patients have detectable OmpC-specific T cells in circulation, with similar immunophenotypes and often identical T-cell–receptor sequences. However, expanded clones from patients with CD produce less of the immunoregulatory cytokine IL10, showing a selective defect in the regulatory function of intestinal microbial antigen-specific T cells in patients with CD. [Display omitted]
ISSN:2352-345X
2352-345X
DOI:10.1016/j.jcmgh.2020.04.013