Sustainable Fuel Production from Ambient Moisture via Ferroelectrically Driven MoS2 Nanosheets
Unlike traditional water splitting in an aqueous medium, direct decomposition of atmospheric water is a promising way to simultaneously dehumidify the living space and generate power. Here, a tailored superhygroscopic hydrogel, a catalyst, and a solar cell are integrated into a humidity digester tha...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-06, Vol.32 (25), p.e2000971-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Unlike traditional water splitting in an aqueous medium, direct decomposition of atmospheric water is a promising way to simultaneously dehumidify the living space and generate power. Here, a tailored superhygroscopic hydrogel, a catalyst, and a solar cell are integrated into a humidity digester that can break down ambient moisture into hydrogen and oxygen, creating an efficient electrochemical cell. The function of the hydrogel is to harvest moisture from ambient humidity and transfer the collected water to the catalyst. Barium titanate and vertical 2D MoS2 nanosheets are integrated as the catalyst: the negatively polarized cathode can enhance the electron transport and attract H+ to the MoS2 surface for water reduction, while water oxidation takes place at the positively polarized anode. By employing this mechanism, it is possible to maintain the relative humidity in a medium‐sized room at |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202000971 |