Investigating promising substrates for promoting 1,4-dioxane biodegradation: effects of ethane and tetrahydrofuran on microbial consortia

Cometabolic biodegradation of 1,4-dioxane (dioxane) in the presence of primary substrates is a promising strategy for treating dioxane at environmentally relevant concentrations. Seven aqueous amendments (i.e., tetrahydrofuran (THF), butanone, acetone, 1-butanol, 2-butanol, phenol and acetate) and f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biodegradation (Dordrecht) 2020-06, Vol.31 (3), p.171-182
Hauptverfasser: Xiong, Yi, Mason, Olivia U., Lowe, Ashlee, Zhang, Zhiming, Zhou, Chao, Chen, Gang, Villalonga, Michael J., Tang, Youneng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cometabolic biodegradation of 1,4-dioxane (dioxane) in the presence of primary substrates is a promising strategy for treating dioxane at environmentally relevant concentrations. Seven aqueous amendments (i.e., tetrahydrofuran (THF), butanone, acetone, 1-butanol, 2-butanol, phenol and acetate) and five gaseous amendments (i.e . , C 1 –C 4 alkanes and ethylene) were evaluated as the primary substrates for dioxane degradation by mixed microbial consortia. The aqueous amendments were tested in microcosm bottles and the gaseous amendments were tested in a continuous-flow membrane biofilm reactor with hollow fibers pressurized by the gaseous amendments. Ethane was found to be the most effective gaseous substrate and THF was the only aqueous substrate that promoted dioxane degradation. A diverse microbial community consisting of several putative dioxane degraders— Mycobacterium , Flavobacterium and Bradyrhizobiaceae —were enriched in the presence of ethane. This is the first study showing that ethane was the most effective substrate among the short-chain alkanes and it promoted dioxane degradation by enriching dioxane-degraders that did not harbor the well-known dioxane/tetrahydrofuran monooxygenase.
ISSN:0923-9820
1572-9729
DOI:10.1007/s10532-020-09901-2