A general method to synthesize and sinter bulk ceramics in seconds
Ceramics are an important class of materials with widespread applications because of their high thermal, mechanical, and chemical stability. Computational predictions based on first principles methods can be a valuable tool in accelerating materials discovery to develop improved ceramics. It is esse...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2020-05, Vol.368 (6490), p.521-526 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 526 |
---|---|
container_issue | 6490 |
container_start_page | 521 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 368 |
creator | Wang, Chengwei Ping, Weiwei Bai, Qiang Cui, Huachen Hensleigh, Ryan Wang, Ruiliu Brozena, Alexandra H Xu, Zhenpeng Dai, Jiaqi Pei, Yong Zheng, Chaolun Pastel, Glenn Gao, Jinlong Wang, Xizheng Wang, Howard Zhao, Ji-Cheng Yang, Bao Zheng, Xiaoyu Rayne Luo, Jian Mo, Yifei Dunn, Bruce Hu, Liangbing |
description | Ceramics are an important class of materials with widespread applications because of their high thermal, mechanical, and chemical stability. Computational predictions based on first principles methods can be a valuable tool in accelerating materials discovery to develop improved ceramics. It is essential to experimentally confirm the material properties of such predictions. However, materials screening rates are limited by the long processing times and the poor compositional control from volatile element loss in conventional ceramic sintering techniques. To overcome these limitations, we developed an ultrafast high-temperature sintering (UHS) process for the fabrication of ceramic materials by radiative heating under an inert atmosphere. We provide several examples of the UHS process to demonstrate its potential utility and applications, including advancements in solid-state electrolytes, multicomponent structures, and high-throughput materials screening. |
doi_str_mv | 10.1126/science.aaz7681 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2397675577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397675577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-c1e76351dc17be49e3c23da1739e64b676503315590f4b86a538f1073b9506f53</originalsourceid><addsrcrecordid>eNpdkD1PwzAURS0EoqUwsyFLLCxp7bzYjsdS8SVVYoE5cpwXmpI4xU6G9teTisDA9IZ37tXVIeSasznnsVwEW6GzODfmoGTKT8iUMy0iHTM4JVPGQEYpU2JCLkLYMjb8NJyTCcQgBAM2JfdL-oEOvalpg92mLWjX0rB33QZDdUBqXEFD5Tr0NO_rT2oHtKlsoJWjAW3rinBJzkpTB7wa74y8Pz68rZ6j9evTy2q5jmwCcRdZjkqC4IXlKsdEI9gYCsMVaJRJLpUcFgEXQrMyyVNpBKQlZwpyLZgsBczI3U_vzrdfPYYua6pgsa6Nw7YPWQxaSSWEUgN6-w_dtr13w7ojJXWiUs0HavFDWd-G4LHMdr5qjN9nnGVHvdmoNxv1DombsbfPGyz--F-f8A117HYF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396947891</pqid></control><display><type>article</type><title>A general method to synthesize and sinter bulk ceramics in seconds</title><source>American Association for the Advancement of Science</source><creator>Wang, Chengwei ; Ping, Weiwei ; Bai, Qiang ; Cui, Huachen ; Hensleigh, Ryan ; Wang, Ruiliu ; Brozena, Alexandra H ; Xu, Zhenpeng ; Dai, Jiaqi ; Pei, Yong ; Zheng, Chaolun ; Pastel, Glenn ; Gao, Jinlong ; Wang, Xizheng ; Wang, Howard ; Zhao, Ji-Cheng ; Yang, Bao ; Zheng, Xiaoyu Rayne ; Luo, Jian ; Mo, Yifei ; Dunn, Bruce ; Hu, Liangbing</creator><creatorcontrib>Wang, Chengwei ; Ping, Weiwei ; Bai, Qiang ; Cui, Huachen ; Hensleigh, Ryan ; Wang, Ruiliu ; Brozena, Alexandra H ; Xu, Zhenpeng ; Dai, Jiaqi ; Pei, Yong ; Zheng, Chaolun ; Pastel, Glenn ; Gao, Jinlong ; Wang, Xizheng ; Wang, Howard ; Zhao, Ji-Cheng ; Yang, Bao ; Zheng, Xiaoyu Rayne ; Luo, Jian ; Mo, Yifei ; Dunn, Bruce ; Hu, Liangbing</creatorcontrib><description>Ceramics are an important class of materials with widespread applications because of their high thermal, mechanical, and chemical stability. Computational predictions based on first principles methods can be a valuable tool in accelerating materials discovery to develop improved ceramics. It is essential to experimentally confirm the material properties of such predictions. However, materials screening rates are limited by the long processing times and the poor compositional control from volatile element loss in conventional ceramic sintering techniques. To overcome these limitations, we developed an ultrafast high-temperature sintering (UHS) process for the fabrication of ceramic materials by radiative heating under an inert atmosphere. We provide several examples of the UHS process to demonstrate its potential utility and applications, including advancements in solid-state electrolytes, multicomponent structures, and high-throughput materials screening.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaz7681</identifier><identifier>PMID: 32355030</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Ceramic tools ; Ceramics ; Computer applications ; Electrolytes ; Fabrication ; First principles ; Heat ; Heating ; High temperature ; Inert atmospheres ; Material properties ; Molten salt electrolytes ; Screening ; Sintering ; Solid electrolytes ; Solid state ; Synthesis</subject><ispartof>Science (American Association for the Advancement of Science), 2020-05, Vol.368 (6490), p.521-526</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-c1e76351dc17be49e3c23da1739e64b676503315590f4b86a538f1073b9506f53</citedby><cites>FETCH-LOGICAL-c432t-c1e76351dc17be49e3c23da1739e64b676503315590f4b86a538f1073b9506f53</cites><orcidid>0000-0002-5126-9152 ; 0000-0002-2277-9890 ; 0000-0002-2380-4744 ; 0000-0001-8685-5728 ; 0000-0003-3536-3138 ; 0000-0002-5045-2123 ; 0000-0002-5437-8709 ; 0000-0001-9905-4049 ; 0000-0003-1971-2174 ; 0000-0002-8162-4629 ; 0000-0002-0036-4635 ; 0000-0002-5386-0886 ; 0000-0003-1731-7971 ; 0000-0002-9456-9315 ; 0000-0002-0212-1397 ; 0000-0002-5424-0216 ; 0000-0002-4426-1080 ; 0000-0001-5669-4740 ; 0000-0002-5603-5283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32355030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chengwei</creatorcontrib><creatorcontrib>Ping, Weiwei</creatorcontrib><creatorcontrib>Bai, Qiang</creatorcontrib><creatorcontrib>Cui, Huachen</creatorcontrib><creatorcontrib>Hensleigh, Ryan</creatorcontrib><creatorcontrib>Wang, Ruiliu</creatorcontrib><creatorcontrib>Brozena, Alexandra H</creatorcontrib><creatorcontrib>Xu, Zhenpeng</creatorcontrib><creatorcontrib>Dai, Jiaqi</creatorcontrib><creatorcontrib>Pei, Yong</creatorcontrib><creatorcontrib>Zheng, Chaolun</creatorcontrib><creatorcontrib>Pastel, Glenn</creatorcontrib><creatorcontrib>Gao, Jinlong</creatorcontrib><creatorcontrib>Wang, Xizheng</creatorcontrib><creatorcontrib>Wang, Howard</creatorcontrib><creatorcontrib>Zhao, Ji-Cheng</creatorcontrib><creatorcontrib>Yang, Bao</creatorcontrib><creatorcontrib>Zheng, Xiaoyu Rayne</creatorcontrib><creatorcontrib>Luo, Jian</creatorcontrib><creatorcontrib>Mo, Yifei</creatorcontrib><creatorcontrib>Dunn, Bruce</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><title>A general method to synthesize and sinter bulk ceramics in seconds</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Ceramics are an important class of materials with widespread applications because of their high thermal, mechanical, and chemical stability. Computational predictions based on first principles methods can be a valuable tool in accelerating materials discovery to develop improved ceramics. It is essential to experimentally confirm the material properties of such predictions. However, materials screening rates are limited by the long processing times and the poor compositional control from volatile element loss in conventional ceramic sintering techniques. To overcome these limitations, we developed an ultrafast high-temperature sintering (UHS) process for the fabrication of ceramic materials by radiative heating under an inert atmosphere. We provide several examples of the UHS process to demonstrate its potential utility and applications, including advancements in solid-state electrolytes, multicomponent structures, and high-throughput materials screening.</description><subject>Ceramic tools</subject><subject>Ceramics</subject><subject>Computer applications</subject><subject>Electrolytes</subject><subject>Fabrication</subject><subject>First principles</subject><subject>Heat</subject><subject>Heating</subject><subject>High temperature</subject><subject>Inert atmospheres</subject><subject>Material properties</subject><subject>Molten salt electrolytes</subject><subject>Screening</subject><subject>Sintering</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Synthesis</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAURS0EoqUwsyFLLCxp7bzYjsdS8SVVYoE5cpwXmpI4xU6G9teTisDA9IZ37tXVIeSasznnsVwEW6GzODfmoGTKT8iUMy0iHTM4JVPGQEYpU2JCLkLYMjb8NJyTCcQgBAM2JfdL-oEOvalpg92mLWjX0rB33QZDdUBqXEFD5Tr0NO_rT2oHtKlsoJWjAW3rinBJzkpTB7wa74y8Pz68rZ6j9evTy2q5jmwCcRdZjkqC4IXlKsdEI9gYCsMVaJRJLpUcFgEXQrMyyVNpBKQlZwpyLZgsBczI3U_vzrdfPYYua6pgsa6Nw7YPWQxaSSWEUgN6-w_dtr13w7ojJXWiUs0HavFDWd-G4LHMdr5qjN9nnGVHvdmoNxv1DombsbfPGyz--F-f8A117HYF</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Wang, Chengwei</creator><creator>Ping, Weiwei</creator><creator>Bai, Qiang</creator><creator>Cui, Huachen</creator><creator>Hensleigh, Ryan</creator><creator>Wang, Ruiliu</creator><creator>Brozena, Alexandra H</creator><creator>Xu, Zhenpeng</creator><creator>Dai, Jiaqi</creator><creator>Pei, Yong</creator><creator>Zheng, Chaolun</creator><creator>Pastel, Glenn</creator><creator>Gao, Jinlong</creator><creator>Wang, Xizheng</creator><creator>Wang, Howard</creator><creator>Zhao, Ji-Cheng</creator><creator>Yang, Bao</creator><creator>Zheng, Xiaoyu Rayne</creator><creator>Luo, Jian</creator><creator>Mo, Yifei</creator><creator>Dunn, Bruce</creator><creator>Hu, Liangbing</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5126-9152</orcidid><orcidid>https://orcid.org/0000-0002-2277-9890</orcidid><orcidid>https://orcid.org/0000-0002-2380-4744</orcidid><orcidid>https://orcid.org/0000-0001-8685-5728</orcidid><orcidid>https://orcid.org/0000-0003-3536-3138</orcidid><orcidid>https://orcid.org/0000-0002-5045-2123</orcidid><orcidid>https://orcid.org/0000-0002-5437-8709</orcidid><orcidid>https://orcid.org/0000-0001-9905-4049</orcidid><orcidid>https://orcid.org/0000-0003-1971-2174</orcidid><orcidid>https://orcid.org/0000-0002-8162-4629</orcidid><orcidid>https://orcid.org/0000-0002-0036-4635</orcidid><orcidid>https://orcid.org/0000-0002-5386-0886</orcidid><orcidid>https://orcid.org/0000-0003-1731-7971</orcidid><orcidid>https://orcid.org/0000-0002-9456-9315</orcidid><orcidid>https://orcid.org/0000-0002-0212-1397</orcidid><orcidid>https://orcid.org/0000-0002-5424-0216</orcidid><orcidid>https://orcid.org/0000-0002-4426-1080</orcidid><orcidid>https://orcid.org/0000-0001-5669-4740</orcidid><orcidid>https://orcid.org/0000-0002-5603-5283</orcidid></search><sort><creationdate>20200501</creationdate><title>A general method to synthesize and sinter bulk ceramics in seconds</title><author>Wang, Chengwei ; Ping, Weiwei ; Bai, Qiang ; Cui, Huachen ; Hensleigh, Ryan ; Wang, Ruiliu ; Brozena, Alexandra H ; Xu, Zhenpeng ; Dai, Jiaqi ; Pei, Yong ; Zheng, Chaolun ; Pastel, Glenn ; Gao, Jinlong ; Wang, Xizheng ; Wang, Howard ; Zhao, Ji-Cheng ; Yang, Bao ; Zheng, Xiaoyu Rayne ; Luo, Jian ; Mo, Yifei ; Dunn, Bruce ; Hu, Liangbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-c1e76351dc17be49e3c23da1739e64b676503315590f4b86a538f1073b9506f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ceramic tools</topic><topic>Ceramics</topic><topic>Computer applications</topic><topic>Electrolytes</topic><topic>Fabrication</topic><topic>First principles</topic><topic>Heat</topic><topic>Heating</topic><topic>High temperature</topic><topic>Inert atmospheres</topic><topic>Material properties</topic><topic>Molten salt electrolytes</topic><topic>Screening</topic><topic>Sintering</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chengwei</creatorcontrib><creatorcontrib>Ping, Weiwei</creatorcontrib><creatorcontrib>Bai, Qiang</creatorcontrib><creatorcontrib>Cui, Huachen</creatorcontrib><creatorcontrib>Hensleigh, Ryan</creatorcontrib><creatorcontrib>Wang, Ruiliu</creatorcontrib><creatorcontrib>Brozena, Alexandra H</creatorcontrib><creatorcontrib>Xu, Zhenpeng</creatorcontrib><creatorcontrib>Dai, Jiaqi</creatorcontrib><creatorcontrib>Pei, Yong</creatorcontrib><creatorcontrib>Zheng, Chaolun</creatorcontrib><creatorcontrib>Pastel, Glenn</creatorcontrib><creatorcontrib>Gao, Jinlong</creatorcontrib><creatorcontrib>Wang, Xizheng</creatorcontrib><creatorcontrib>Wang, Howard</creatorcontrib><creatorcontrib>Zhao, Ji-Cheng</creatorcontrib><creatorcontrib>Yang, Bao</creatorcontrib><creatorcontrib>Zheng, Xiaoyu Rayne</creatorcontrib><creatorcontrib>Luo, Jian</creatorcontrib><creatorcontrib>Mo, Yifei</creatorcontrib><creatorcontrib>Dunn, Bruce</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chengwei</au><au>Ping, Weiwei</au><au>Bai, Qiang</au><au>Cui, Huachen</au><au>Hensleigh, Ryan</au><au>Wang, Ruiliu</au><au>Brozena, Alexandra H</au><au>Xu, Zhenpeng</au><au>Dai, Jiaqi</au><au>Pei, Yong</au><au>Zheng, Chaolun</au><au>Pastel, Glenn</au><au>Gao, Jinlong</au><au>Wang, Xizheng</au><au>Wang, Howard</au><au>Zhao, Ji-Cheng</au><au>Yang, Bao</au><au>Zheng, Xiaoyu Rayne</au><au>Luo, Jian</au><au>Mo, Yifei</au><au>Dunn, Bruce</au><au>Hu, Liangbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general method to synthesize and sinter bulk ceramics in seconds</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>368</volume><issue>6490</issue><spage>521</spage><epage>526</epage><pages>521-526</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Ceramics are an important class of materials with widespread applications because of their high thermal, mechanical, and chemical stability. Computational predictions based on first principles methods can be a valuable tool in accelerating materials discovery to develop improved ceramics. It is essential to experimentally confirm the material properties of such predictions. However, materials screening rates are limited by the long processing times and the poor compositional control from volatile element loss in conventional ceramic sintering techniques. To overcome these limitations, we developed an ultrafast high-temperature sintering (UHS) process for the fabrication of ceramic materials by radiative heating under an inert atmosphere. We provide several examples of the UHS process to demonstrate its potential utility and applications, including advancements in solid-state electrolytes, multicomponent structures, and high-throughput materials screening.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>32355030</pmid><doi>10.1126/science.aaz7681</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5126-9152</orcidid><orcidid>https://orcid.org/0000-0002-2277-9890</orcidid><orcidid>https://orcid.org/0000-0002-2380-4744</orcidid><orcidid>https://orcid.org/0000-0001-8685-5728</orcidid><orcidid>https://orcid.org/0000-0003-3536-3138</orcidid><orcidid>https://orcid.org/0000-0002-5045-2123</orcidid><orcidid>https://orcid.org/0000-0002-5437-8709</orcidid><orcidid>https://orcid.org/0000-0001-9905-4049</orcidid><orcidid>https://orcid.org/0000-0003-1971-2174</orcidid><orcidid>https://orcid.org/0000-0002-8162-4629</orcidid><orcidid>https://orcid.org/0000-0002-0036-4635</orcidid><orcidid>https://orcid.org/0000-0002-5386-0886</orcidid><orcidid>https://orcid.org/0000-0003-1731-7971</orcidid><orcidid>https://orcid.org/0000-0002-9456-9315</orcidid><orcidid>https://orcid.org/0000-0002-0212-1397</orcidid><orcidid>https://orcid.org/0000-0002-5424-0216</orcidid><orcidid>https://orcid.org/0000-0002-4426-1080</orcidid><orcidid>https://orcid.org/0000-0001-5669-4740</orcidid><orcidid>https://orcid.org/0000-0002-5603-5283</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2020-05, Vol.368 (6490), p.521-526 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2397675577 |
source | American Association for the Advancement of Science |
subjects | Ceramic tools Ceramics Computer applications Electrolytes Fabrication First principles Heat Heating High temperature Inert atmospheres Material properties Molten salt electrolytes Screening Sintering Solid electrolytes Solid state Synthesis |
title | A general method to synthesize and sinter bulk ceramics in seconds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20method%20to%20synthesize%20and%20sinter%20bulk%20ceramics%20in%20seconds&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Wang,%20Chengwei&rft.date=2020-05-01&rft.volume=368&rft.issue=6490&rft.spage=521&rft.epage=526&rft.pages=521-526&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaz7681&rft_dat=%3Cproquest_cross%3E2397675577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396947891&rft_id=info:pmid/32355030&rfr_iscdi=true |