A general method to synthesize and sinter bulk ceramics in seconds

Ceramics are an important class of materials with widespread applications because of their high thermal, mechanical, and chemical stability. Computational predictions based on first principles methods can be a valuable tool in accelerating materials discovery to develop improved ceramics. It is esse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-05, Vol.368 (6490), p.521-526
Hauptverfasser: Wang, Chengwei, Ping, Weiwei, Bai, Qiang, Cui, Huachen, Hensleigh, Ryan, Wang, Ruiliu, Brozena, Alexandra H, Xu, Zhenpeng, Dai, Jiaqi, Pei, Yong, Zheng, Chaolun, Pastel, Glenn, Gao, Jinlong, Wang, Xizheng, Wang, Howard, Zhao, Ji-Cheng, Yang, Bao, Zheng, Xiaoyu Rayne, Luo, Jian, Mo, Yifei, Dunn, Bruce, Hu, Liangbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 526
container_issue 6490
container_start_page 521
container_title Science (American Association for the Advancement of Science)
container_volume 368
creator Wang, Chengwei
Ping, Weiwei
Bai, Qiang
Cui, Huachen
Hensleigh, Ryan
Wang, Ruiliu
Brozena, Alexandra H
Xu, Zhenpeng
Dai, Jiaqi
Pei, Yong
Zheng, Chaolun
Pastel, Glenn
Gao, Jinlong
Wang, Xizheng
Wang, Howard
Zhao, Ji-Cheng
Yang, Bao
Zheng, Xiaoyu Rayne
Luo, Jian
Mo, Yifei
Dunn, Bruce
Hu, Liangbing
description Ceramics are an important class of materials with widespread applications because of their high thermal, mechanical, and chemical stability. Computational predictions based on first principles methods can be a valuable tool in accelerating materials discovery to develop improved ceramics. It is essential to experimentally confirm the material properties of such predictions. However, materials screening rates are limited by the long processing times and the poor compositional control from volatile element loss in conventional ceramic sintering techniques. To overcome these limitations, we developed an ultrafast high-temperature sintering (UHS) process for the fabrication of ceramic materials by radiative heating under an inert atmosphere. We provide several examples of the UHS process to demonstrate its potential utility and applications, including advancements in solid-state electrolytes, multicomponent structures, and high-throughput materials screening.
doi_str_mv 10.1126/science.aaz7681
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2397675577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397675577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-c1e76351dc17be49e3c23da1739e64b676503315590f4b86a538f1073b9506f53</originalsourceid><addsrcrecordid>eNpdkD1PwzAURS0EoqUwsyFLLCxp7bzYjsdS8SVVYoE5cpwXmpI4xU6G9teTisDA9IZ37tXVIeSasznnsVwEW6GzODfmoGTKT8iUMy0iHTM4JVPGQEYpU2JCLkLYMjb8NJyTCcQgBAM2JfdL-oEOvalpg92mLWjX0rB33QZDdUBqXEFD5Tr0NO_rT2oHtKlsoJWjAW3rinBJzkpTB7wa74y8Pz68rZ6j9evTy2q5jmwCcRdZjkqC4IXlKsdEI9gYCsMVaJRJLpUcFgEXQrMyyVNpBKQlZwpyLZgsBczI3U_vzrdfPYYua6pgsa6Nw7YPWQxaSSWEUgN6-w_dtr13w7ojJXWiUs0HavFDWd-G4LHMdr5qjN9nnGVHvdmoNxv1DombsbfPGyz--F-f8A117HYF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396947891</pqid></control><display><type>article</type><title>A general method to synthesize and sinter bulk ceramics in seconds</title><source>American Association for the Advancement of Science</source><creator>Wang, Chengwei ; Ping, Weiwei ; Bai, Qiang ; Cui, Huachen ; Hensleigh, Ryan ; Wang, Ruiliu ; Brozena, Alexandra H ; Xu, Zhenpeng ; Dai, Jiaqi ; Pei, Yong ; Zheng, Chaolun ; Pastel, Glenn ; Gao, Jinlong ; Wang, Xizheng ; Wang, Howard ; Zhao, Ji-Cheng ; Yang, Bao ; Zheng, Xiaoyu Rayne ; Luo, Jian ; Mo, Yifei ; Dunn, Bruce ; Hu, Liangbing</creator><creatorcontrib>Wang, Chengwei ; Ping, Weiwei ; Bai, Qiang ; Cui, Huachen ; Hensleigh, Ryan ; Wang, Ruiliu ; Brozena, Alexandra H ; Xu, Zhenpeng ; Dai, Jiaqi ; Pei, Yong ; Zheng, Chaolun ; Pastel, Glenn ; Gao, Jinlong ; Wang, Xizheng ; Wang, Howard ; Zhao, Ji-Cheng ; Yang, Bao ; Zheng, Xiaoyu Rayne ; Luo, Jian ; Mo, Yifei ; Dunn, Bruce ; Hu, Liangbing</creatorcontrib><description>Ceramics are an important class of materials with widespread applications because of their high thermal, mechanical, and chemical stability. Computational predictions based on first principles methods can be a valuable tool in accelerating materials discovery to develop improved ceramics. It is essential to experimentally confirm the material properties of such predictions. However, materials screening rates are limited by the long processing times and the poor compositional control from volatile element loss in conventional ceramic sintering techniques. To overcome these limitations, we developed an ultrafast high-temperature sintering (UHS) process for the fabrication of ceramic materials by radiative heating under an inert atmosphere. We provide several examples of the UHS process to demonstrate its potential utility and applications, including advancements in solid-state electrolytes, multicomponent structures, and high-throughput materials screening.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaz7681</identifier><identifier>PMID: 32355030</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Ceramic tools ; Ceramics ; Computer applications ; Electrolytes ; Fabrication ; First principles ; Heat ; Heating ; High temperature ; Inert atmospheres ; Material properties ; Molten salt electrolytes ; Screening ; Sintering ; Solid electrolytes ; Solid state ; Synthesis</subject><ispartof>Science (American Association for the Advancement of Science), 2020-05, Vol.368 (6490), p.521-526</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-c1e76351dc17be49e3c23da1739e64b676503315590f4b86a538f1073b9506f53</citedby><cites>FETCH-LOGICAL-c432t-c1e76351dc17be49e3c23da1739e64b676503315590f4b86a538f1073b9506f53</cites><orcidid>0000-0002-5126-9152 ; 0000-0002-2277-9890 ; 0000-0002-2380-4744 ; 0000-0001-8685-5728 ; 0000-0003-3536-3138 ; 0000-0002-5045-2123 ; 0000-0002-5437-8709 ; 0000-0001-9905-4049 ; 0000-0003-1971-2174 ; 0000-0002-8162-4629 ; 0000-0002-0036-4635 ; 0000-0002-5386-0886 ; 0000-0003-1731-7971 ; 0000-0002-9456-9315 ; 0000-0002-0212-1397 ; 0000-0002-5424-0216 ; 0000-0002-4426-1080 ; 0000-0001-5669-4740 ; 0000-0002-5603-5283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32355030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chengwei</creatorcontrib><creatorcontrib>Ping, Weiwei</creatorcontrib><creatorcontrib>Bai, Qiang</creatorcontrib><creatorcontrib>Cui, Huachen</creatorcontrib><creatorcontrib>Hensleigh, Ryan</creatorcontrib><creatorcontrib>Wang, Ruiliu</creatorcontrib><creatorcontrib>Brozena, Alexandra H</creatorcontrib><creatorcontrib>Xu, Zhenpeng</creatorcontrib><creatorcontrib>Dai, Jiaqi</creatorcontrib><creatorcontrib>Pei, Yong</creatorcontrib><creatorcontrib>Zheng, Chaolun</creatorcontrib><creatorcontrib>Pastel, Glenn</creatorcontrib><creatorcontrib>Gao, Jinlong</creatorcontrib><creatorcontrib>Wang, Xizheng</creatorcontrib><creatorcontrib>Wang, Howard</creatorcontrib><creatorcontrib>Zhao, Ji-Cheng</creatorcontrib><creatorcontrib>Yang, Bao</creatorcontrib><creatorcontrib>Zheng, Xiaoyu Rayne</creatorcontrib><creatorcontrib>Luo, Jian</creatorcontrib><creatorcontrib>Mo, Yifei</creatorcontrib><creatorcontrib>Dunn, Bruce</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><title>A general method to synthesize and sinter bulk ceramics in seconds</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Ceramics are an important class of materials with widespread applications because of their high thermal, mechanical, and chemical stability. Computational predictions based on first principles methods can be a valuable tool in accelerating materials discovery to develop improved ceramics. It is essential to experimentally confirm the material properties of such predictions. However, materials screening rates are limited by the long processing times and the poor compositional control from volatile element loss in conventional ceramic sintering techniques. To overcome these limitations, we developed an ultrafast high-temperature sintering (UHS) process for the fabrication of ceramic materials by radiative heating under an inert atmosphere. We provide several examples of the UHS process to demonstrate its potential utility and applications, including advancements in solid-state electrolytes, multicomponent structures, and high-throughput materials screening.</description><subject>Ceramic tools</subject><subject>Ceramics</subject><subject>Computer applications</subject><subject>Electrolytes</subject><subject>Fabrication</subject><subject>First principles</subject><subject>Heat</subject><subject>Heating</subject><subject>High temperature</subject><subject>Inert atmospheres</subject><subject>Material properties</subject><subject>Molten salt electrolytes</subject><subject>Screening</subject><subject>Sintering</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Synthesis</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAURS0EoqUwsyFLLCxp7bzYjsdS8SVVYoE5cpwXmpI4xU6G9teTisDA9IZ37tXVIeSasznnsVwEW6GzODfmoGTKT8iUMy0iHTM4JVPGQEYpU2JCLkLYMjb8NJyTCcQgBAM2JfdL-oEOvalpg92mLWjX0rB33QZDdUBqXEFD5Tr0NO_rT2oHtKlsoJWjAW3rinBJzkpTB7wa74y8Pz68rZ6j9evTy2q5jmwCcRdZjkqC4IXlKsdEI9gYCsMVaJRJLpUcFgEXQrMyyVNpBKQlZwpyLZgsBczI3U_vzrdfPYYua6pgsa6Nw7YPWQxaSSWEUgN6-w_dtr13w7ojJXWiUs0HavFDWd-G4LHMdr5qjN9nnGVHvdmoNxv1DombsbfPGyz--F-f8A117HYF</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Wang, Chengwei</creator><creator>Ping, Weiwei</creator><creator>Bai, Qiang</creator><creator>Cui, Huachen</creator><creator>Hensleigh, Ryan</creator><creator>Wang, Ruiliu</creator><creator>Brozena, Alexandra H</creator><creator>Xu, Zhenpeng</creator><creator>Dai, Jiaqi</creator><creator>Pei, Yong</creator><creator>Zheng, Chaolun</creator><creator>Pastel, Glenn</creator><creator>Gao, Jinlong</creator><creator>Wang, Xizheng</creator><creator>Wang, Howard</creator><creator>Zhao, Ji-Cheng</creator><creator>Yang, Bao</creator><creator>Zheng, Xiaoyu Rayne</creator><creator>Luo, Jian</creator><creator>Mo, Yifei</creator><creator>Dunn, Bruce</creator><creator>Hu, Liangbing</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5126-9152</orcidid><orcidid>https://orcid.org/0000-0002-2277-9890</orcidid><orcidid>https://orcid.org/0000-0002-2380-4744</orcidid><orcidid>https://orcid.org/0000-0001-8685-5728</orcidid><orcidid>https://orcid.org/0000-0003-3536-3138</orcidid><orcidid>https://orcid.org/0000-0002-5045-2123</orcidid><orcidid>https://orcid.org/0000-0002-5437-8709</orcidid><orcidid>https://orcid.org/0000-0001-9905-4049</orcidid><orcidid>https://orcid.org/0000-0003-1971-2174</orcidid><orcidid>https://orcid.org/0000-0002-8162-4629</orcidid><orcidid>https://orcid.org/0000-0002-0036-4635</orcidid><orcidid>https://orcid.org/0000-0002-5386-0886</orcidid><orcidid>https://orcid.org/0000-0003-1731-7971</orcidid><orcidid>https://orcid.org/0000-0002-9456-9315</orcidid><orcidid>https://orcid.org/0000-0002-0212-1397</orcidid><orcidid>https://orcid.org/0000-0002-5424-0216</orcidid><orcidid>https://orcid.org/0000-0002-4426-1080</orcidid><orcidid>https://orcid.org/0000-0001-5669-4740</orcidid><orcidid>https://orcid.org/0000-0002-5603-5283</orcidid></search><sort><creationdate>20200501</creationdate><title>A general method to synthesize and sinter bulk ceramics in seconds</title><author>Wang, Chengwei ; Ping, Weiwei ; Bai, Qiang ; Cui, Huachen ; Hensleigh, Ryan ; Wang, Ruiliu ; Brozena, Alexandra H ; Xu, Zhenpeng ; Dai, Jiaqi ; Pei, Yong ; Zheng, Chaolun ; Pastel, Glenn ; Gao, Jinlong ; Wang, Xizheng ; Wang, Howard ; Zhao, Ji-Cheng ; Yang, Bao ; Zheng, Xiaoyu Rayne ; Luo, Jian ; Mo, Yifei ; Dunn, Bruce ; Hu, Liangbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-c1e76351dc17be49e3c23da1739e64b676503315590f4b86a538f1073b9506f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ceramic tools</topic><topic>Ceramics</topic><topic>Computer applications</topic><topic>Electrolytes</topic><topic>Fabrication</topic><topic>First principles</topic><topic>Heat</topic><topic>Heating</topic><topic>High temperature</topic><topic>Inert atmospheres</topic><topic>Material properties</topic><topic>Molten salt electrolytes</topic><topic>Screening</topic><topic>Sintering</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chengwei</creatorcontrib><creatorcontrib>Ping, Weiwei</creatorcontrib><creatorcontrib>Bai, Qiang</creatorcontrib><creatorcontrib>Cui, Huachen</creatorcontrib><creatorcontrib>Hensleigh, Ryan</creatorcontrib><creatorcontrib>Wang, Ruiliu</creatorcontrib><creatorcontrib>Brozena, Alexandra H</creatorcontrib><creatorcontrib>Xu, Zhenpeng</creatorcontrib><creatorcontrib>Dai, Jiaqi</creatorcontrib><creatorcontrib>Pei, Yong</creatorcontrib><creatorcontrib>Zheng, Chaolun</creatorcontrib><creatorcontrib>Pastel, Glenn</creatorcontrib><creatorcontrib>Gao, Jinlong</creatorcontrib><creatorcontrib>Wang, Xizheng</creatorcontrib><creatorcontrib>Wang, Howard</creatorcontrib><creatorcontrib>Zhao, Ji-Cheng</creatorcontrib><creatorcontrib>Yang, Bao</creatorcontrib><creatorcontrib>Zheng, Xiaoyu Rayne</creatorcontrib><creatorcontrib>Luo, Jian</creatorcontrib><creatorcontrib>Mo, Yifei</creatorcontrib><creatorcontrib>Dunn, Bruce</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chengwei</au><au>Ping, Weiwei</au><au>Bai, Qiang</au><au>Cui, Huachen</au><au>Hensleigh, Ryan</au><au>Wang, Ruiliu</au><au>Brozena, Alexandra H</au><au>Xu, Zhenpeng</au><au>Dai, Jiaqi</au><au>Pei, Yong</au><au>Zheng, Chaolun</au><au>Pastel, Glenn</au><au>Gao, Jinlong</au><au>Wang, Xizheng</au><au>Wang, Howard</au><au>Zhao, Ji-Cheng</au><au>Yang, Bao</au><au>Zheng, Xiaoyu Rayne</au><au>Luo, Jian</au><au>Mo, Yifei</au><au>Dunn, Bruce</au><au>Hu, Liangbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general method to synthesize and sinter bulk ceramics in seconds</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>368</volume><issue>6490</issue><spage>521</spage><epage>526</epage><pages>521-526</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Ceramics are an important class of materials with widespread applications because of their high thermal, mechanical, and chemical stability. Computational predictions based on first principles methods can be a valuable tool in accelerating materials discovery to develop improved ceramics. It is essential to experimentally confirm the material properties of such predictions. However, materials screening rates are limited by the long processing times and the poor compositional control from volatile element loss in conventional ceramic sintering techniques. To overcome these limitations, we developed an ultrafast high-temperature sintering (UHS) process for the fabrication of ceramic materials by radiative heating under an inert atmosphere. We provide several examples of the UHS process to demonstrate its potential utility and applications, including advancements in solid-state electrolytes, multicomponent structures, and high-throughput materials screening.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>32355030</pmid><doi>10.1126/science.aaz7681</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5126-9152</orcidid><orcidid>https://orcid.org/0000-0002-2277-9890</orcidid><orcidid>https://orcid.org/0000-0002-2380-4744</orcidid><orcidid>https://orcid.org/0000-0001-8685-5728</orcidid><orcidid>https://orcid.org/0000-0003-3536-3138</orcidid><orcidid>https://orcid.org/0000-0002-5045-2123</orcidid><orcidid>https://orcid.org/0000-0002-5437-8709</orcidid><orcidid>https://orcid.org/0000-0001-9905-4049</orcidid><orcidid>https://orcid.org/0000-0003-1971-2174</orcidid><orcidid>https://orcid.org/0000-0002-8162-4629</orcidid><orcidid>https://orcid.org/0000-0002-0036-4635</orcidid><orcidid>https://orcid.org/0000-0002-5386-0886</orcidid><orcidid>https://orcid.org/0000-0003-1731-7971</orcidid><orcidid>https://orcid.org/0000-0002-9456-9315</orcidid><orcidid>https://orcid.org/0000-0002-0212-1397</orcidid><orcidid>https://orcid.org/0000-0002-5424-0216</orcidid><orcidid>https://orcid.org/0000-0002-4426-1080</orcidid><orcidid>https://orcid.org/0000-0001-5669-4740</orcidid><orcidid>https://orcid.org/0000-0002-5603-5283</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-05, Vol.368 (6490), p.521-526
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2397675577
source American Association for the Advancement of Science
subjects Ceramic tools
Ceramics
Computer applications
Electrolytes
Fabrication
First principles
Heat
Heating
High temperature
Inert atmospheres
Material properties
Molten salt electrolytes
Screening
Sintering
Solid electrolytes
Solid state
Synthesis
title A general method to synthesize and sinter bulk ceramics in seconds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20method%20to%20synthesize%20and%20sinter%20bulk%20ceramics%20in%20seconds&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Wang,%20Chengwei&rft.date=2020-05-01&rft.volume=368&rft.issue=6490&rft.spage=521&rft.epage=526&rft.pages=521-526&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaz7681&rft_dat=%3Cproquest_cross%3E2397675577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396947891&rft_id=info:pmid/32355030&rfr_iscdi=true