Measuring the resilience of advanced life support systems
Despite the central importance of crew safety in designing and operating a life support system, the metric commonly used to evaluate alternative Advanced Life Support (ALS) technologies does not currently provide explicit techniques for measuring safety. The resilience of a system, or the system s a...
Gespeichert in:
Veröffentlicht in: | Scientific and technical aerospace reports 2004-02, Vol.42 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite the central importance of crew safety in designing and operating a life support system, the metric commonly used to evaluate alternative Advanced Life Support (ALS) technologies does not currently provide explicit techniques for measuring safety. The resilience of a system, or the system s ability to meet performance requirements and recover from component-level faults, is fundamentally a dynamic property. This paper motivates the use of computer models as a tool to understand and improve system resilience throughout the design process. Extensive simulation of a hybrid computational model of a water revitalization subsystem (WRS) with probabilistic, component-level faults provides data about off-nominal behavior of the system. The data can then be used to test alternative measures of resilience as predictors of the system s ability to recover from component-level faults. A novel approach to measuring system resilience using a Markov chain model of performance data is also developed. Results emphasize that resilience depends on the complex interaction of faults, controls, and system dynamics, rather than on simple fault probabilities. |
---|---|
ISSN: | 1548-8837 |