Periodic Three-Dimensional Nitrogen-Doped Mesoporous Carbon Spheres Embedded with Co/Co3O4 Nanoparticles toward Microwave Absorption
Although various bio-inspired materials with outstanding mechanical, acoustic, and optic properties have been developed, bio-inspired materials for microwave absorption applications are rarely reported. Herein, under the inspiration of the opal structure, for the first time, a kind of Co@Co3O4/nitro...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-05, Vol.12 (21), p.24102-24111 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although various bio-inspired materials with outstanding mechanical, acoustic, and optic properties have been developed, bio-inspired materials for microwave absorption applications are rarely reported. Herein, under the inspiration of the opal structure, for the first time, a kind of Co@Co3O4/nitrogen-doped (N-doped) mesoporous carbon sphere (Co@Co3O4/NMCS) with a periodic three-dimensional structure toward microwave absorption application was designed and synthesized. The microwave absorption performance was optimized with respect to the content of Co@Co3O4 nanoparticles. Co@Co3O4/NMCS with ∼20 wt % Co@Co3O4 achieves a reflection loss of −53.8 dB at 5.7 GHz. The simulated radar cross section demonstrated that the Co@Co3O4/NMCS can efficiently suppress the strong electromagnetic scattering from a metal groove structure, which further reveals its excellent absorbing performance. These periodic porous structures of N-doped mesoporous carbon spheres combined with the magnetic Co@Co3O4 nanoparticles contribute to the excellent microwave-absorbing performance. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c03105 |