Body-size-dependent phantom library constructed from ICRP mesh-type reference computational phantoms

Recently, ICRP Task Group 103 developed new mesh-type reference computational phantoms (MRCPs) for the adult male and female by converting the current voxel-type reference computational phantoms (VRCPs) of ICRP Publication 110 into a high-quality/fidelity mesh format. Utilizing the great deformabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2020-06, Vol.65 (12), p.125014-125014
Hauptverfasser: Choi, Chansoo, Yeom, Yeon Soo, Lee, Hanjin, Han, Haegin, Shin, Bangho, Nguyen, Thang Tat, Kim, Chan Hyeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, ICRP Task Group 103 developed new mesh-type reference computational phantoms (MRCPs) for the adult male and female by converting the current voxel-type reference computational phantoms (VRCPs) of ICRP Publication 110 into a high-quality/fidelity mesh format. Utilizing the great deformability/flexibility of the MRCPs compared with the VRCPs, in the present study, we established a body-size-dependent phantom library by modifying the MRCPs. The established library includes 108 adult male and 104 adult female phantoms in different standing heights and body weights, covering most body sizes representative of Caucasian and Asian populations. Ten secondary anthropometric parameters with respect to standing height and body weight were derived from various anthropometric databases and applied in the construction of the phantom library. An in-house program for automatic phantom adjustment was developed and applied for practical construction of such a large number of phantoms in the library with minimized human intervention. Organ/tissue doses calculated with three male phantoms in different standing heights (165, 175, and 190 cm) with a fixed body weight of 80 kg for external exposures to broad parallel photon beams from 0.01 to 104 MeV were compared, observing there are significant dose differences particularly for the photon energies
ISSN:0031-9155
1361-6560
1361-6560
DOI:10.1088/1361-6560/ab8ddc