Efficient photocatalytic inactivation of E. coli by Mn-CdS/ZnCuInSe/CuInS2 quantum dots-sensitized TiO2 nanowires
A novel visible light-driven photocatalyst (represented as Mn-CdS/ZCISe/CIS/TiO2) for the passivation of E. coli was prepared with TiO2 nanowires as support and using CuInS2 (CIS) and ZnCuInSe (ZCISe) quantum dots (QDs), as well as Mn-doped CdS (Mn-CdS) nanoparticles (NPs) as sensitizers. The use of...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2020-09, Vol.31 (39), p.395602-395602 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel visible light-driven photocatalyst (represented as Mn-CdS/ZCISe/CIS/TiO2) for the passivation of E. coli was prepared with TiO2 nanowires as support and using CuInS2 (CIS) and ZnCuInSe (ZCISe) quantum dots (QDs), as well as Mn-doped CdS (Mn-CdS) nanoparticles (NPs) as sensitizers. The use of CIS and ZCISe QDs and Mn-CdS NPs extends the light harvest region to visible light. The photoelectric conversion efficiency was consequently improved, with a photocurrent density of 12.5 mA cm−2, about 60 times that of pure TiO2 nanowires. The germicidal efficiency of the photocatalyst was assessed by passivation of E. coli, 96% bacteria in 50 ml 105 colony forming units (CFU) ml−1 solution were killed within 50 min. Besides the high efficiency, the composite has good stability and satisfactory recycling performance. The antibiotic mechanism was also performed by using photoluminescence and a scavenging agent of different active matter, revealing that the photo-generated holes play a major role in the sterilization process. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/ab8d6c |