3-D-Printed Registration Phantom for Combined Ultrasound and Optical Imaging of Biological Tissues
Efforts to develop quantitative ultrasound biomarkers would benefit from comparisons between ultrasound data and higher-resolution images of the tissue microstructure, such as from optical microscopy. However, only a few studies have used these methods for multiscale imaging because it is difficult...
Gespeichert in:
Veröffentlicht in: | Ultrasound in medicine & biology 2020-07, Vol.46 (7), p.1808-1814 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Efforts to develop quantitative ultrasound biomarkers would benefit from comparisons between ultrasound data and higher-resolution images of the tissue microstructure, such as from optical microscopy. However, only a few studies have used these methods for multiscale imaging because it is difficult to register low-resolution (>100 μm) ultrasound images to high-resolution microscopy images. To address this need, we have designed a 3-D-printed registration phantom that is made of a hard fluorescent resin, fits into a glass-bottom dish and can be used to calculate a coordinate system transform between ultrasound and optical microscopy. We report the phantom design, a registration protocol and an example registration using 18.5-MHz ultrasound and second harmonic generation microscopy. We evaluate the registration precision, achieving standard deviations smaller than the ultrasound resolution across all axes, and illustrate on a mouse mammary gland that this method yields results superior to those of manual landmark registration. |
---|---|
ISSN: | 0301-5629 1879-291X |
DOI: | 10.1016/j.ultrasmedbio.2020.03.010 |