Insights on the interaction mechanism of brigatinib to human α-1-acid glycoprotein: Experimental and computational approaches
Brigatinib, a multi-target kinase inhibitor, is primarily used to treat anaplastic lymphoma kinase (ALK)-positive patients with advanced non-small cell lung cancer (NSCLC) who have previously received crizotinib or are resistant to crizotinib. In this study, we focused on elucidating the interaction...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2020-08, Vol.157, p.340-349 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Brigatinib, a multi-target kinase inhibitor, is primarily used to treat anaplastic lymphoma kinase (ALK)-positive patients with advanced non-small cell lung cancer (NSCLC) who have previously received crizotinib or are resistant to crizotinib. In this study, we focused on elucidating the interaction mechanism between brigatinib and human alpha-1-acid glycoprotein (HAG) through experimental and computational approaches. Steady-state fluorescence and UV–vis spectroscopy measurements revealed that brigatinib could quench the intrinsic fluorescence of HAG in a static quenching manner and formed the brigatinib-HAG complex with the stoichiometric ratio of 1:1. The findings revealed that brigatinib had a stronger affinity on HAG due to higher binding constant of 2.91 × 105 M−1 at 298 K. It can be proved from thermodynamic parameter analysis that brigatinib spontaneously bound to HAG in the means of enthalpy driven, the main forces for stabilizing brigatinib-HAG complexes were hydrogen bonding and hydrophobic interactions. The experimental results also indicated that the binding interaction induced micro-environmental changes around tryptophan residues and the alteration in secondary structure of HAG. The presence of metal ions like Mg2+, Zn2+, Ca2+, Ni2+ and Co2+ affects the binding interaction and thus change the therapeutic efficacy of brigatinib. Molecular docking results suggested that brigatinib was embedded to the hydrophobic cavity of HAG. The experimental and computational results certified that hydrogen bonding and hydrophobic interaction as well as electrostatic energy and van der Waals forces plays a leading role in the binding process.
•Binding behavior between brigatinib and HAG was investigated.•There was a strong affinity of brigatinib on HAG.•Hydrophobicity surrounding tryptophan residues decreased after binding.•The secondary structure of HAG also slightly changed due to binding brigatinib.•Van der Waals forces played a dominant role in the bonding process except electrostatic energy. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2020.04.151 |